Vol. 120
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-16
An Multilayer Metamaterial Inspired Antenna for in-Body and on-Body Application
By
Progress In Electromagnetics Research M, Vol. 120, 29-40, 2023
Abstract
In this research work, a flexible metamaterial inspired antenna is proposed. The substrate is made of polyamide making it bendable. The stepwise detail analysis is discussed, and the antenna has two complimentary split resonators with circular ring placed in the ground plane. A superstrate along with an EBG structure is added in the final design. Mathematical modelling is done to prove metamaterial structure. To test the on-body results, first the permittivity of different fabrics is measured using DSL-01 (SES Instruments Pvt. Ltd). Phantom solution is required to test In-Body (Implantable) results.
Citation
Siddhant Goswami, Deepak C. Karia, Tapas Bhuiya, and Vikalp Pratap Singh, "An Multilayer Metamaterial Inspired Antenna for in-Body and on-Body Application," Progress In Electromagnetics Research M, Vol. 120, 29-40, 2023.
doi:10.2528/PIERM23052703
References

1. Kumar, S. A., T. Shanmuganantham, and G. Sasikala, "Design and development of implantable CPW fed monopole U slot antenna at 2.45 GHz ISM band for biomedical applications," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1604-1608, 2015.
doi:10.1002/mop.29151

2. Liu, C., Y. X. Guo, R. Jegadeesan, and S. Xiao, "In vivo testing of circularly polarized implantable antennas in rats," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 783-786, 2014.

3. Kiourti, A. and K. S. Nikita, "A review of implantable patch antennas for biomedical telemetry: Challenges and solutions [Wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, 210-228, 2012.
doi:10.1109/MAP.2012.6293992

4. Shah, S. M. A., M. Zada, J. Nasir, O. Owais, A. Iqbal, and H. Yoo, "Miniaturized four-port MIMO implantable antenna for high data-rate wireless capsule endoscopy applications," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 4, 3123-3133, 2023.
doi:10.1109/TAP.2023.3243984

5. Wang, G. B., X. W. Xuan, D. L. Jiang, K. Li, and W. Wang, "A miniaturized implantable antenna sensor for wireless capsule endoscopy system," AEU --- International Journal of Electronics and Communications, Vol. 143, 154022, 2022.
doi:10.1016/j.aeue.2021.154022

6. Li, Y., E. Porter, A. Santorelli, M. Popovic, and M. Coates, "Microwave breast cancer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation," Biomedical Signal Processing and Control, Vol. 31, 366-376, 2017.
doi:10.1016/j.bspc.2016.09.003

7. Caliskan, R., S. S. Gultekin, D. Uzer, and A. Dundar, "Microstrip patch antenna design for breast cancer detection," Procedia --- Social and Behavioral Sciences 2015, World Conference on Technology, Innovation and Entrepreneurship, Vol. 195, 2905-2911, 2015.

8. Abbas, S. M., K. P. Esselle, and Y. Ranga, "An armband-wearable printed antenna with a full ground plane for body area networks," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 2014.

9. Shrestha, S., M. Agarwal, P. Ghane, and K. Varahramyan, "Flexible microstrip antenna for skin contact application," International Journal of Antennas and Propagation, Vol. 2012, 2012.

10. Wang, M., Z. Yang, J. Wu, et al. "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3076-3086, 2018.
doi:10.1109/TAP.2018.2820733

11. Ali, T., A. M. Saadh, R. C. Biradar, J. Anguera, and A. Andujar, "A miniaturized metamaterial slot antenna for wireless applications," AEU --- International Journal of Electronics and Communications, Vol. 82, 368-382, 2017.
doi:10.1016/j.aeue.2017.10.005

12. Raval, F., Y. Kosta, and H. Joshi, "Reduced size patch antenna using complementary split ring resonator as defected ground plane," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 8, 1126-1133, 2015.
doi:10.1016/j.aeue.2015.04.013

13. Virdee, B., Grand Challenges in Metamaterial Antennas, 2022.

14. Zhu, C., T. Li, K. Li, et al. "Electrically small metamaterial-inspired triband antenna with meta-mode," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1738-1741, 2015.
doi:10.1109/LAWP.2015.2421356

15. Bhattacharjee, S., S. Maity, S. R. B. Chaudhuri, and M. Mitra, "Metamaterial inspired wideband biocompatible antenna for implantable applications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 11, 1799-1805, 2018.
doi:10.1049/iet-map.2017.1143

16. Goswami, S. and D. C. Karia, "A metamaterial-inspired circularly polarized antenna for implantable applications," Engineering Reports, Vol. 2, No. 10, e12251, 2020.
doi:10.1002/eng2.12251

17. Goswami, S. and D. C. Karia, "An metamaterial inspired antenna with CSRR and rectangular SRR based flexible antenna with jeans gap filled for wireless body area network," Progress In Electromagnetics Research C, Vol. 122, 165-181, 2022.
doi:10.2528/PIERC22020203

18. Mahmud, M., M. Islam, N. Misran, M. Singh, and K. Mat, "A negative index metamaterial to enhance the performance of miniaturized UWB antenna for microwave imaging applications," Applied Sciences, Vol. 7, No. 11, 1149, 2017.
doi:10.3390/app7111149

19. Rothwell, E. J., J. L. Frasch, S. M. Ellison, P. Chahal, and R. O. Ouedraogo, "Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016.
doi:10.2528/PIER16071706