Vol. 118
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-07-20
Optically Transparent Dual-Polarized Cross Dipole Antenna with Metal Mesh Film for 5G Applications
By
Progress In Electromagnetics Research M, Vol. 118, 37-46, 2023
Abstract
Optically transparent antennas have attracted increasing interest in recent years. However, the inherent ohmic loss of transparent conductor used in antennas will always introduce degradation of radiation efficiency. It is of most importance to find the optimization between the material loss and radiation efficiency. In this paper, we design and experimentally demonstrate a high-performance optically transparent dual-polarized cross dipole antenna over 3.4-3.8 GHz for 5G wireless communication based on the characteristic analysis of surface current distribution. By making current distribution uniform on the radiators and reducing the current on the ground, the mutual coupling between the elements is alleviated, and the radiation efficiency can be optimized. The proposed antenna is fabricated with 0.118-Ohm/sq meshed metal, and the optical transparency of antenna is 81%. The proposed antenna achieves a voltage standing wave ratio (VSWR) of less than 1.3, radiation efficiency of 72% (84% of pure copper) and a peak gain of 4.5 dBi (5.1 dBi of pure copper). Compared to current state-of-arts, the proposed antenna exhibits better performance of the figure of merit (FOM) in terms of the bandwidth, optical transparency and radiation efficiency. Our work paves the way to diverse application of beyond-5G wireless communication.
Citation
Haowei Xi, Xiao-Liang Ge, Kuiwen Xu, Jianhua Shen, Xianglong Liu, and Xu Su, "Optically Transparent Dual-Polarized Cross Dipole Antenna with Metal Mesh Film for 5G Applications," Progress In Electromagnetics Research M, Vol. 118, 37-46, 2023.
doi:10.2528/PIERM23052401
References

1. Lindmark, B. and M. Nilsson, "On the available diversity gain from different dual-polarized antennas," IEEE Journal on Selected Areas in Communications, Vol. 19, No. 2, 287-294, 2001.
doi:10.1109/49.914506

2. Lee, S. and K. Huang, "Coverage and economy of cellular networks with many base stations," IEEE Antennas Wireless Propag. Lett., Vol. 16, No. 7, 1038-1040, 2012.

3. Lu, X., Y. Chen, S. Guo, and S. Yang, "An electromagnetic-transparent cascade comb dipole antenna for multi-band shared-aperture base station antenna array," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 2750-2759, 2022.
doi:10.1109/TAP.2021.3137511

4. Sayem, A. S. M., R. B. V. B. Simorangkir, K. P. Esselle, R. M. Hashmi, and H. Liu, "A method to develop FLexible robust optically transparent unidirectional antennas utilizing pure water, PDMS, and transparent conductive Mesh," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 6943-6952, 2020.
doi:10.1109/TAP.2020.2996816

5. Duy Tung, P. and C. W. Jung, "Highly transparent planar dipole using liquid ionized salt water under surface tension condition for UHD tv applications," IEEE Trans. Antennas Propag., Vol. 69, No. 1, 35-42, 2021.
doi:10.1109/TAP.2020.3008637

6. Malek, M. A., S. Hakimi, S. K. Abdul Rahim, and A. K. Evizal, "Dual-band CPW-fed transparent antenna for active RFID tags," IEEE Antennas Wireless Propag. Lett., Vol. 14, 919-922, 2015.
doi:10.1109/LAWP.2014.2387157

7. Peter, T., R. Nilavalan, H. F. Abu Tarboush, and S. W. Cheung, "A novel technique and soldering method to improve performance of transparent polymer antennas," IEEE Antennas Wireless Propag. Lett., Vol. 9, 918-921, 2010.
doi:10.1109/LAWP.2010.2077271

8. Song, H. J., T. Y. Hsu, D. F. Sievenpiper, H. P. Hsu, J. Schaffner, and E. Yasan, "A method for improving the efficiency of transparent film antenna," IEEE Antennas Wireless Propag. Lett., Vol. 7, 753-756, 2008.
doi:10.1109/LAWP.2008.2008107

9. Potti, D. and Y. Tusharika, "A novel optically transparent UWB antenna for automotive MIMO communications," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 3821-3828, 2021.
doi:10.1109/TAP.2020.3044383

10. Kocia, C. and S. V. Hum, "Design of an optically transparent re ectarray for solar applications using indium tin oxide," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 2884-2893, 2016.
doi:10.1109/TAP.2016.2555338

11. Haraty, M. R., M. Naser-Moghadasi, A. A. Lotfi-Neyestanak, and A. Nikfarjam, "Improving the efficiency of transparent antenna using gold nanolayer deposition," IEEE Antennas Wireless Propag. Lett., Vol. 15, 4-7, 2016.

12. Ding, C., L. Liu, and K.-M. Luk, "An optically transparent dual-polarized stacked patch antenna with metal-mesh films," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 10, 1981-1985, 2019.
doi:10.1109/LAWP.2019.2935694

13. Kang, S. H. and C. W. Jung, "Transparent patch antenna using metal mesh," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2095-2100, 2018.
doi:10.1109/TAP.2018.2804622

14. Hong, S., Y. Kim, and C. Won Jung, "Transparent microstrip patch antennas with multilayer and metal-mesh films," IEEE Antennas Wireless Propag. Lett., Vol. 16, 772-775, 2017.
doi:10.1109/LAWP.2016.2602389

15. Duy Tung, P. and C. W. Jung, "Optically transparent wideband dipole and patch external antennas using metal mesh for UHD tv applications," IEEE Trans. Antennas Propag., Vol. 68, No. 3, 1907-1917, 2020.
doi:10.1109/TAP.2019.2950077

16. Wu, B., X.-Y. Sun, H.-R. Zu, H.-H. Zhang, and T. Su, "Transparent ultra-wideband halved coplanar Vivaldi antenna with metal mesh film," IEEE Antennas Wireless Propag. Lett., Vol. 21, No. 12, 2532-2536, 2022.
doi:10.1109/LAWP.2022.3200455

17. Hong, W., S. Lim, S. Ko, and Y. G. Kim, "Optically invisible antenna integrated within an OLED touch display panel for IoT applications," IEEE Trans. Antennas Propag., Vol. 69, No. 5, 2853-2863, 2021.
doi:10.1109/TAP.2020.3027898

18. Hautcoeur, J., F. Colombel, M. Himdi, X. Castel, and E. M. Cruz, "Large and optically transparent multilayer for broadband H-shaped slot antenna," IEEE Antennas Wireless Propag. Lett., Vol. 12, 933-936, 2013.
doi:10.1109/LAWP.2013.2274033

19. Jackson, R. W., "Considerations in the use of coplanar waveguide for millimeter-wave integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 34, No. 12, 1450-1456, 1986.
doi:10.1109/TMTT.1986.1133562

20. Morabito, A. F., R. Palmeri, V. A. Morabito, A. R. Lagana', and T. Isernia, "Single-surface phaseless characterization of antennas via hierarchically ordered optimizations," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 461-474, Jan. 2019.
doi:10.1109/TAP.2018.2877270