Vol. 118
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-07-27
Improved Side-Lobe Suppression by Optimizing the Beam Synthetization in Uniform Circular Arrays for OAM Generation
By
Progress In Electromagnetics Research M, Vol. 118, 71-82, 2023
Abstract
Enhancing the capacity of wireless communications systems is necessary to manage growing networks. Thus, this work presents an analytical model for describing the deterioration in orbital angular momentum (OAM). The proposed model is based on a uniform circular array, which can be applied in OAM generation to obtain the desired beam properties. First, the side-lobe problem in OAM applications is examined and resolved by optimizing the beam synthetization. Then, comparisons between the two window techniques are used to evaluate their impacts. Finally, the effects of selecting the optimal window technique and width on the solutions are investigated. Numerical results and the comparisons between derived formulas and those obtained via full-wave numerical simulations are shown.
Citation
Layth Abogneem, Ahmad Alamayreh, and Nidal Qasem, "Improved Side-Lobe Suppression by Optimizing the Beam Synthetization in Uniform Circular Arrays for OAM Generation," Progress In Electromagnetics Research M, Vol. 118, 71-82, 2023.
doi:10.2528/PIERM23052305
References

1. Alamayreh, A. and N. Qasem, "Vortex beam generation in microwave band," Progress In Electromagnetics Research C, Vol. 107, 49-63, 2020.
doi:10.2528/PIERC20082006

2. Qasem, N. and A. Alamayreh, "Improved beam steering method using OAM wave," Computer Systems Science and Engineering, Vol. 4, No. 1, 417-431, 2023.
doi:10.32604/csse.2023.035603

3. Chen, R., H. Du, and J. Li, "Indoor communications with OAM array," 2020 IEEE International Conference on Communications Workshops (ICC Workshops), 1-5, Dublin, Ireland, 2020.

4. Suganuma, H., S. Saito, K. Ogawa, and F. Maehara, "Effectiveness evaluation of dual-polarized OAM multiplexing employing SC-FDE in urban street canyon environments," IEEE Access, Vol. 10, 31934-31941, 2022.
doi:10.1109/ACCESS.2022.3160161

5. Liu, H., K. Liu, Y. Cheng, and H. Wang, "Microwave vortex imaging based on dual coupled OAM beams," IEEE Sensors Journal, Vol. 20, 806-815, 2019.

6. Zeng, Y., Y. Wang, Z. Chen, J. Zhang, and J. Zhang, "Two-dimensional OAM radar imaging using uniform circular antenna array," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-4, Copenhagen, Denmark, 2020.

7. Liu, K., Y. Cheng, X. Li, Y. Qin, H. Wang, and Y. Jiang, "Generation of orbital angular momentum beams for electromagnetic vortex imaging," IEEE Antennas and Wireless Propagation Letters, Vol. 15, No. 16509284, 1873-1876, 2016.
doi:10.1109/LAWP.2016.2542187

8. Wang, Z., R. Malaney, and J. Green, "Satellite-based entanglement distribution using orbital angular momentum of light," 2020 IEEE International Conference on Communications Workshops (ICC Workshops), 1-6, Dublin, Ireland, 2020.

9. Wang, Z., R. Malaney, and J. Green, "Detecting orbital angular momentum of light in satellite-to-ground quantum communications," 2019 IEEE Global Communications Conference (GLOBECOM), 1-6, Waikoloa, HI, USA, 2019.

10. Wang, Z., R. Malaney, and B. Burnett, "Satellite-to-earth quantum key distribution via orbital angular momentum," Physical Review Applied, Vol. 14, No. 6, 1-15, 2020.

11. Lyu, R., W. Cheng, W. Zhang, and F. Qin, "OAM-NFC: A short-range high capacity transmission scheme," ICC 2020 --- 2020 IEEE International Conference on Communications (ICC), 1-6, Dublin, Ireland, 2020.

12. Qasem, N., A. Alamayreh, and J. Rahhal, "Beam steering using OAM waves generated by a concentric circular loop antenna array," Wireless Networks, Vol. 27, 2431-2440, 2021.
doi:10.1007/s11276-021-02589-z

13. Lian, Y., Y. Yu, S. Han, N. Luan, Y. Wang, and Z. Lu, "OAM beams generation technology in optical fiber: A review," IEEE Sensors Journal, Vol. 22, No. 5, 3828-3843, 2022.
doi:10.1109/JSEN.2022.3145833

14. Liao, Z., Y. Che, L. Liu, B. C. Pan, B. G. Cai, J. N. Zhou, G. O. Luo, and Y. Liu, "Reconfigurable vector vortex beams using spoof surface plasmon ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 8, 6795-6803, 2022.
doi:10.1109/TAP.2022.3161487

15. Wei, H., A. K. Amrithanath, and S. Krishnaswamy, "3D printing of micro-optic spiral phase plates for the generation of optical vortex beams," IEEE Photonics Technology Letters, Vol. 31, No. 8, 599-602, 2019.
doi:10.1109/LPT.2019.2903151

16. Guo, K., Q. Zheng, Z. Yin, and Z. Guo, "Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface," IEEE Access, Vol. 8, 75523-75529, 2020.
doi:10.1109/ACCESS.2020.2988914

17. Yuan, T., Y. Cheng, H.Wang, and Y. Qin, "Beam steering for electromagnetic vortex imaging using uniform circular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 704-707, 2017.
doi:10.1109/LAWP.2016.2600404

18. Chen, R., W. X. Long, X. Wang, and J. Li, "Multi-mode OAM radio waves: Generation, angle of arrival estimation and reception with UCAs," IEEE Transactions on Wireless Communications, Vol. 19, No. 10, 6932-6947, 2020.
doi:10.1109/TWC.2020.3007026

19. Mohammadi, S. M., L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsso, B. Thide, K. Forozesh, and T. D. Carozzi, "Orbital angular momentum in radio --- A system study," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 565-572, 2010.
doi:10.1109/TAP.2009.2037701

20. Alamayreh, A., N. Qasem, and J. S. Rahhal, "General configuration MIMO system with arbitrary OAM," Electromagnetics, Vol. 40, No. 5, 343-353, 2020.
doi:10.1080/02726343.2020.1780378

21. Qin, F., L. Li, Y. Liu, W. Cheng, and H. Zhang, "A four-mode OAM antenna array with equal divergence angle," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1941-1945, 2019.
doi:10.1109/LAWP.2019.2934524

22. Alamayreh, A., N. Qasem, and J. S. Rahhal, "Pre-coding OAM based MIMO system for multi-user communications," IEEE Access, Vol. 10, 125411-125420, 2022.
doi:10.1109/ACCESS.2022.3225424

23. Saito, S., Y. Ito, H. Suganum, K. Ogawa, and F. Maehara, "Efficient inter-mode interference cancellation method for OAM multiplexing in the presence of beam axis misalignment," 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 1-6, Montreal, QC, Canada, 2021.

24. Cisternas, J. E., J. I. Espinoza, and J. A. Anguita, "Machine learning identification of multiple-state OAM superpositions detected with spatial mode sensors," Laser Communication and Propagation through the Atmosphere and Oceans X, Vol. 11834, 129-135, 2021.

25. Silva, B. P. D., B. A. D. Marques, R. B. Rodrigues, P. H. S. Ribeiro, and A. Z. Khoury, "Machine-learning recognition of light orbital-angular-momentum superpositions," Physical Review A, Vol. 103, No. 6, 063704, 2021.
doi:10.1103/PhysRevA.103.063704

26. Yuan, T., Y. Cheng, H. Wang, and Y. Qin, "Beam steering for electromagnetic vortex imaging using uniform circular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 704-707, 2017.
doi:10.1109/LAWP.2016.2600404

27. Song, Q., Y. Wang, K. Liu, J. Zhang, and Y. Wang, "Beam steering for OAM beams using time-modulated circular arrays," Electronics Letters, Vol. 54, No. 17, 1017-1018, 2018.
doi:10.1049/el.2018.5386

28. Liang, J., Z. Jing, Q. Feng, Y. Zheng, L. Li, and , "Synthesis and measurement of a circular-polarized deflection OAM vortex beam with sidelobe suppression array," IEEE Access, Vol. 8, 89143-89151, 2020.
doi:10.1109/ACCESS.2020.2993877

29. Wang, Y., J. Liu, T. Hu, W. Jie, D. Yang, and A. Tennant, "Convergence of OAM beams using time-modulated concentric circular arrays," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-3, IEEE, Copenhagen, Denmark, 2020.

30. Liu, K., Y. Cheng, H. Wang, X. Li, and Y. Qin, "Radiation pattern synthesis for the generation of vortex electromagnetic wave," IET Microwaves, Antennas & Propagation, Vol. 11, No. 5, 685-694, 2017.
doi:10.1049/iet-map.2016.0681

31. Albagory, Y. and F. Alraddady, "An efficient approach for sidelobe level reduction based on recursive sequential damping," Symmetry, Vol. 13, No. 3, 480, 2021.
doi:10.3390/sym13030480

32. Rahman, M., M. S. Islam, and M. F. Reza, "A higher immune tapered beamforming using Gaussian Window in the presence of amplitude errors," 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), 577-580, IEEE, Dhaka, Bangladesh, 2018.

33. Prabhu, K. M. M., Window Functions and Their Applications in Signal Processing, Taylor & Francis, 2014.

34. Abo-Seida, O. M., N. T. M. El-Dabe, A. R. Ali, and G. A. Shalaby, "Cherenkov FEL reaction with plasma-filled cylindrical waveguide in fractional D-dimensional space," IEEE Transactions on Plasma Science, Vol. 49, No. 7, 2070-2079, 2021.
doi:10.1109/TPS.2021.3084904

35. Goodman, J. W., Introduction to Fourier Optics, Roberts and Company Publishers, 2005.

36. Ettorre, M., M. Casaletti, G. Valerio, R. Sauleau, L. L. Coq, S. C. Pavone, and M. Albani, "On the near-field shaping and focusing capability of a radial line slot array," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1991-1999, 2014.
doi:10.1109/TAP.2014.2301994

37. Azevedo, J. A. R., "Synthesis of planar arrays with elements in concentric rings," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 839-845, 2011.
doi:10.1109/TAP.2010.2102999