1. Fang, L. and R. M. Henderson, "Orbital angular momentum uniform circular antenna array design and optimization-based array factor," 2019 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), 1-4, Waco, TX, USA, 2019.
2. Akhtar, M. W., S. A. Hassan, R. Ghaffar, H. Jung, S. Garg, and M. S. Hossain, "The shift to 6G communications: Vision and requirements," Human-centric Computing and Information Sciences, Vol. 10, No. 1, 1-27, 2020.
doi:10.1186/s13673-020-00258-2
3. Alamayreh, A. and N. Qasem, "Vortex beam generation in microwave band," Progress In Electromagnetics Research C, Vol. 107, 49-63, 2021.
doi:10.2528/PIERC20082006
4. Allen, L., M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review A, Vol. 45, No. 11, 8185-8189, 1992.
doi:10.1103/PhysRevA.45.8185
5. Qasem, N., A. Alamayreh, and J. Rahhal, "Beam steering using OAM waves generated by a concentric circular loop antenna array," Wireless Networks, Vol. 27, No. 4, 2431-2440, 2021.
doi:10.1007/s11276-021-02589-z
6. Alkhawatrah, M., A. Alamayreh, and N. Qasem, "Cooperative relay networks based on the OAM technique for 5G applications," Computer Systems Science & Engineering, Vol. 44, No. 3, 1911-1919, 2023.
doi:10.32604/csse.2023.028614
7. Alamayreh, A., N. Qasem, and J. S. Rahhal, "General configuration MIMO system with arbitrary OAM," Electromagnetics, Vol. 40, No. 5, 343-353, 2020.
doi:10.1080/02726343.2020.1780378
8. Liu, K., Y. Cheng, Y. Gao, X. Li, Y. Qin, and H. Wang, "Super-resolution radar imaging based on experimental OAM beams," Applied Physics Letters, Vol. 110, No. 16, 164102, 2017.
doi:10.1063/1.4981253
9. Yang, Y., K. Guo, F. Shen, Y. Gong, and Z. Guo, "Generating multiple OAM based on a nested dual-arm spiral antenna," IEEE Access, Vol. 7, 138541-138547, 2019.
doi:10.1109/ACCESS.2019.2942601
10. Noor, S. K., M. N. M. Yasin, A. M. Ismail, M. N. Osman, P. J. Soh, N. Ramli, and A. H. Rambe, "A review of orbital angular momentum vortex waves for the next generation wireless communications," IEEE Access, Vol. 10, 89465-89484, 2022.
doi:10.1109/ACCESS.2022.3197653
11. Wang, L., W. Park, C. Yang, H.-D. Bruns, D. G. Kam, and C. Schuster, "Wireless communication of radio waves carrying orbital angular momentum (OAM) above an infinite ground plane," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 2257-2264, 2020.
doi:10.1109/TEMC.2020.2965656
12. Yao, H., H. Kumar, T. Ei, S. Sharma, R. Henderson, S. Ashrafi, D. MacFarlane, Z. Zhao, Y. Yan, and A. Willner, "Experimental demonstration of a dual-channel E-band communication link using commercial impulse radios with orbital angular momentum multiplexing," 2017 IEEE Radio and Wireless Symposium (RWS), 51-54, Phoenix, AZ, USA, 2017.
13. Fang, L., H. Yao, and R. M. Henderson, "OAM antenna arrays at E-band," 2017 IEEE MTT-S International Microwave Symposium (IMS), 658-661, Honololu, HI, USA, 2017.
14. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, Vol. 13, No. 2, 139-150, 2014.
doi:10.1038/nmat3839
15. Wang, R., M. Wang, Y. Zhang, D. Liao, and L. Jing, "Generation of orbital angular momentum multiplexing millimeter waves based on a circular traveling wave antenna," Optics Express, Vol. 31, No. 3, 5131-5139, 2023.
doi:10.1364/OE.483629
16. Hui, X., S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, "Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas," Scientic Reports, Vol. 5, No. 1, 10148, 2015.
doi:10.1038/srep10148
17. Sideeq, M. M. M. and N. Qasem, "Smart wall based on active frequency selective wallpaper," ZANCO Journal of Pure and Applied Sciences, Vol. 28, No. 2, 1-6, 2016.
18. Sharma, T., A. Chehri, and P. Fortier, "Reconfigurable intelligent surfaces for 5G and beyond wireless communications: A comprehensive survey," Energies, Vol. 14, No. 24, 8219, 2021.
doi:10.3390/en14248219
19. Liu, Y., X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, and N. Al-Dhahir, "Reconfigurable intelligent surfaces: principles and opportunities," IEEE Communications Surveys & Tutorials, Vol. 23, No. 3, 1546-1577, 2021.
doi:10.1109/COMST.2021.3077737
20. Abeywickrama, S., R. Zhang, Q. Wu, and C. Yuen, "Intelligent reflecting surface: Practical phase shift model and beamforming optimization," IEEE Transactions on Communications, Vol. 68, No. 9, 5849-5863, 2020.
doi:10.1109/TCOMM.2020.3001125
21. Marhoon, H. M., N. Qasem, N. B. Mohamad, and A. R. Ibrahim, "Design and simulation of a compact metal-graphene frequency reconfigurable microstrip patch antenna with FSS superstrate for 5G applications," International Journal on Engineering Applications (IREA), Vol. 10, No. 3, 193-201, 2022.
doi:10.15866/irea.v10i3.21752
22. Wu, Q., S. Zhang, B. Zheng, C. You, and R. Zhang, "Intelligent reflecting surface-aided wireless communications: A tutorial," IEEE Transactions on Communications, Vol. 69, No. 5, 3313-3351, 2021.
doi:10.1109/TCOMM.2021.3051897
23. Gong, S., X. Lu, D. T. Hoang, D. Niyato, L. Shu, D. I. Kim, and Y. C. Liang, "Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey," IEEE Communications Surveys & Tutorials, Vol. 22, No. 4, 2283-2314, 2020.
doi:10.1109/COMST.2020.3004197
24. Yang, Z., Y. Hu, Z. Zhang, W. Xu, C. Zhong, and K.-K. Wong, "Reconfigurable intelligent surface based orbital angular momentum: Architecture, opportunities, and challenges," IEEE Wireless Communications, Vol. 28, No. 6, 132-137, 2021.
doi:10.1109/MWC.001.2100223
25. Wu, Q. and R. Zhang, "Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming," IEEE Transactions on Wireless Communications, Vol. 18, No. 11, 5394-5409, Nov. 2019.
doi:10.1109/TWC.2019.2936025
26. Han, Y., W. Tang, S. Jin, C.-K.Wen, and X. Ma, "Large intelligent surface assisted wireless communication exploiting statistical CSI," IEEE Transactions on Vehicular Technology, Vol. 68, No. 8, 8238-8242, 2019.
doi:10.1109/TVT.2019.2923997
27. Cui, M., G. Zhang, and R. Zhang, "Secure wireless communication via intelligent reflecting surface," IEEE Wireless Communications Letters, Vol. 8, No. 5, 1410-1414, 2019.
doi:10.1109/LWC.2019.2919685
28. Li, Y., M. Jiang, G. Zhang, and M. Cui, "Achievable rate maximization for intelligent reflecting surface-assisted orbital angular momentum-based communication systems," IEEE Transactions on Vehicular Technology, Vol. 70, No. 7, 7277-7282, 2021.
doi:10.1109/TVT.2021.3089021
29. Qayyum, A. and S. Y. Shin, "Capacity analysis Of IRS Assisted RSMA-OAM for next generation of wireless communication," Proceedings of the Korean Telecommunications Society Conference, 79-80, Seoul, South Korea, 2023.
30. Ono, K., K. Yoshii, M. Saito, Z. Pan, J. Liu, and S. Shimamoto, "Performance analysis of intelligent reflecting surface-assisted orbital angular momentum-based communication systems," 2022 24th International Conference on Advanced Communication Technology (ICACT), 7-12, PyeongChang, Republic of Korea, 2022.
31. Lee, H. Y. and S. Y. Shin, "Reconfigurable intelligent surface assisted multi-user orbital angular momentum communications," 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), 1597-600, Jeju Island, Republic of Korea, Oct. 2022.
32. Wang, Y., N. Cyprien, T. Hu, and X. Liao, "IRS aided OAM-MIMO communication," 2021 International Symposium on Antennas and Propagation (ISAP), 1-2, Taipei, Taiwan, 2021.
33. Feng, Q., X. Kong, M. Shan, Y. Lin, L. Li, and T. J. Cui, "Multi-orbital-angular-momentum-mode vortex wave multiplexing and demultiplexing with shared-aperture reflective metasurfaces," Physical Review Applied, Vol. 17, No. 3, 2022.
doi:10.1103/PhysRevApplied.17.034017
34. Ali, A., M. Khalily, D. Serghiou, and R. Tafazolli, "Reflective metasurface with steered OAM beams for THz communications," IEEE Access, Vol. 11, 12394-12401, 2023.
doi:10.1109/ACCESS.2023.3242647
35. Chung, H., D. Kim, E. Choi, and J. Lee, "E-band metasurface-based orbital angular momentum multiplexing and demultiplexing," Laser & Photonics Reviews, Vol. 16, No. 6, 2100456, 2022.
doi:10.1002/lpor.202100456
36. Grbic, A. and R. Merlin, "Near-field focusing plates and their design," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3159-3165, 2008.
doi:10.1109/TAP.2008.929436
37. Peatross, J. and M. Ware, "Physics of light and optics," Brigham Young University, 2015.
38. Cai, W., R. Liu, Y. Liu, M. Li, and Q. Liu, "Intelligent reflecting surface assisted multi-cell multi-band wireless networks," 2021 IEEE Wireless Communications and Networking Conference (WCNC), 1-6, Nanjing, China, 2021.