Vol. 118
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-08-04
OAM Beam Generation, Steering, and Limitations Using an Intelligent Reflecting Surface
By
Progress In Electromagnetics Research M, Vol. 118, 93-104, 2023
Abstract
Orbital angular momentum (OAM) is a fundamental characteristic of electromagnetic waves and has gained significant attention in recent years because of its potential applications in various fields of radio and optics. Furthermore, the OAM has been proposed as a means to increase the spectral efficiency of wireless communication systems. By encoding multiple independent data streams on different OAM modes of electromagnetic waves, OAM communication systems can increase the amount of information that can be transmitted over a single radio frequency channel. In this paper, we developed a new method for steering the OAM wave using an intelligent reflective surface (IRS) that is suitable for the far field. Specifically, we designed the IRS coefficients to reflect and steer different multiplexed orders between different users based on OAM waves by controlling the IRS impedance, which can be fluctuated depending on the beam steering direction. Moreover, we investigated the physical limitations of the IRS by noting the relations between the number of transmitted modes, the IRS size, and the impedance values in the IRS. Each impedance element in the IRS consists of real and imaginary values, and the negative values in the real part are used as an indication for reaching the physical limit. One suggestion to decrease the negative real values is by using windowing to decrease the beam waist. The proposed method may enable the extended coverage of OAM wireless communication.
Citation
Rafal Hazim, Nidal Qasem, and Ahmad Alamayreh, "OAM Beam Generation, Steering, and Limitations Using an Intelligent Reflecting Surface," Progress In Electromagnetics Research M, Vol. 118, 93-104, 2023.
doi:10.2528/PIERM23052304
References

1. Fang, L. and R. M. Henderson, "Orbital angular momentum uniform circular antenna array design and optimization-based array factor," 2019 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), 1-4, Waco, TX, USA, 2019.

2. Akhtar, M. W., S. A. Hassan, R. Ghaffar, H. Jung, S. Garg, and M. S. Hossain, "The shift to 6G communications: Vision and requirements," Human-centric Computing and Information Sciences, Vol. 10, No. 1, 1-27, 2020.
doi:10.1186/s13673-020-00258-2

3. Alamayreh, A. and N. Qasem, "Vortex beam generation in microwave band," Progress In Electromagnetics Research C, Vol. 107, 49-63, 2021.
doi:10.2528/PIERC20082006

4. Allen, L., M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review A, Vol. 45, No. 11, 8185-8189, 1992.
doi:10.1103/PhysRevA.45.8185

5. Qasem, N., A. Alamayreh, and J. Rahhal, "Beam steering using OAM waves generated by a concentric circular loop antenna array," Wireless Networks, Vol. 27, No. 4, 2431-2440, 2021.
doi:10.1007/s11276-021-02589-z

6. Alkhawatrah, M., A. Alamayreh, and N. Qasem, "Cooperative relay networks based on the OAM technique for 5G applications," Computer Systems Science & Engineering, Vol. 44, No. 3, 1911-1919, 2023.
doi:10.32604/csse.2023.028614

7. Alamayreh, A., N. Qasem, and J. S. Rahhal, "General configuration MIMO system with arbitrary OAM," Electromagnetics, Vol. 40, No. 5, 343-353, 2020.
doi:10.1080/02726343.2020.1780378

8. Liu, K., Y. Cheng, Y. Gao, X. Li, Y. Qin, and H. Wang, "Super-resolution radar imaging based on experimental OAM beams," Applied Physics Letters, Vol. 110, No. 16, 164102, 2017.
doi:10.1063/1.4981253

9. Yang, Y., K. Guo, F. Shen, Y. Gong, and Z. Guo, "Generating multiple OAM based on a nested dual-arm spiral antenna," IEEE Access, Vol. 7, 138541-138547, 2019.
doi:10.1109/ACCESS.2019.2942601

10. Noor, S. K., M. N. M. Yasin, A. M. Ismail, M. N. Osman, P. J. Soh, N. Ramli, and A. H. Rambe, "A review of orbital angular momentum vortex waves for the next generation wireless communications," IEEE Access, Vol. 10, 89465-89484, 2022.
doi:10.1109/ACCESS.2022.3197653

11. Wang, L., W. Park, C. Yang, H.-D. Bruns, D. G. Kam, and C. Schuster, "Wireless communication of radio waves carrying orbital angular momentum (OAM) above an infinite ground plane," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 2257-2264, 2020.
doi:10.1109/TEMC.2020.2965656

12. Yao, H., H. Kumar, T. Ei, S. Sharma, R. Henderson, S. Ashrafi, D. MacFarlane, Z. Zhao, Y. Yan, and A. Willner, "Experimental demonstration of a dual-channel E-band communication link using commercial impulse radios with orbital angular momentum multiplexing," 2017 IEEE Radio and Wireless Symposium (RWS), 51-54, Phoenix, AZ, USA, 2017.

13. Fang, L., H. Yao, and R. M. Henderson, "OAM antenna arrays at E-band," 2017 IEEE MTT-S International Microwave Symposium (IMS), 658-661, Honololu, HI, USA, 2017.

14. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, Vol. 13, No. 2, 139-150, 2014.
doi:10.1038/nmat3839

15. Wang, R., M. Wang, Y. Zhang, D. Liao, and L. Jing, "Generation of orbital angular momentum multiplexing millimeter waves based on a circular traveling wave antenna," Optics Express, Vol. 31, No. 3, 5131-5139, 2023.
doi:10.1364/OE.483629

16. Hui, X., S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, "Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas," Scienti c Reports, Vol. 5, No. 1, 10148, 2015.
doi:10.1038/srep10148

17. Sideeq, M. M. M. and N. Qasem, "Smart wall based on active frequency selective wallpaper," ZANCO Journal of Pure and Applied Sciences, Vol. 28, No. 2, 1-6, 2016.

18. Sharma, T., A. Chehri, and P. Fortier, "Reconfigurable intelligent surfaces for 5G and beyond wireless communications: A comprehensive survey," Energies, Vol. 14, No. 24, 8219, 2021.
doi:10.3390/en14248219

19. Liu, Y., X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, and N. Al-Dhahir, "Reconfigurable intelligent surfaces: principles and opportunities," IEEE Communications Surveys & Tutorials, Vol. 23, No. 3, 1546-1577, 2021.
doi:10.1109/COMST.2021.3077737

20. Abeywickrama, S., R. Zhang, Q. Wu, and C. Yuen, "Intelligent reflecting surface: Practical phase shift model and beamforming optimization," IEEE Transactions on Communications, Vol. 68, No. 9, 5849-5863, 2020.
doi:10.1109/TCOMM.2020.3001125

21. Marhoon, H. M., N. Qasem, N. B. Mohamad, and A. R. Ibrahim, "Design and simulation of a compact metal-graphene frequency reconfigurable microstrip patch antenna with FSS superstrate for 5G applications," International Journal on Engineering Applications (IREA), Vol. 10, No. 3, 193-201, 2022.
doi:10.15866/irea.v10i3.21752

22. Wu, Q., S. Zhang, B. Zheng, C. You, and R. Zhang, "Intelligent reflecting surface-aided wireless communications: A tutorial," IEEE Transactions on Communications, Vol. 69, No. 5, 3313-3351, 2021.
doi:10.1109/TCOMM.2021.3051897

23. Gong, S., X. Lu, D. T. Hoang, D. Niyato, L. Shu, D. I. Kim, and Y. C. Liang, "Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey," IEEE Communications Surveys & Tutorials, Vol. 22, No. 4, 2283-2314, 2020.
doi:10.1109/COMST.2020.3004197

24. Yang, Z., Y. Hu, Z. Zhang, W. Xu, C. Zhong, and K.-K. Wong, "Reconfigurable intelligent surface based orbital angular momentum: Architecture, opportunities, and challenges," IEEE Wireless Communications, Vol. 28, No. 6, 132-137, 2021.
doi:10.1109/MWC.001.2100223

25. Wu, Q. and R. Zhang, "Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming," IEEE Transactions on Wireless Communications, Vol. 18, No. 11, 5394-5409, Nov. 2019.
doi:10.1109/TWC.2019.2936025

26. Han, Y., W. Tang, S. Jin, C.-K.Wen, and X. Ma, "Large intelligent surface assisted wireless communication exploiting statistical CSI," IEEE Transactions on Vehicular Technology, Vol. 68, No. 8, 8238-8242, 2019.
doi:10.1109/TVT.2019.2923997

27. Cui, M., G. Zhang, and R. Zhang, "Secure wireless communication via intelligent reflecting surface," IEEE Wireless Communications Letters, Vol. 8, No. 5, 1410-1414, 2019.
doi:10.1109/LWC.2019.2919685

28. Li, Y., M. Jiang, G. Zhang, and M. Cui, "Achievable rate maximization for intelligent reflecting surface-assisted orbital angular momentum-based communication systems," IEEE Transactions on Vehicular Technology, Vol. 70, No. 7, 7277-7282, 2021.
doi:10.1109/TVT.2021.3089021

29. Qayyum, A. and S. Y. Shin, "Capacity analysis Of IRS Assisted RSMA-OAM for next generation of wireless communication," Proceedings of the Korean Telecommunications Society Conference, 79-80, Seoul, South Korea, 2023.

30. Ono, K., K. Yoshii, M. Saito, Z. Pan, J. Liu, and S. Shimamoto, "Performance analysis of intelligent reflecting surface-assisted orbital angular momentum-based communication systems," 2022 24th International Conference on Advanced Communication Technology (ICACT), 7-12, PyeongChang, Republic of Korea, 2022.

31. Lee, H. Y. and S. Y. Shin, "Reconfigurable intelligent surface assisted multi-user orbital angular momentum communications," 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), 1597-600, Jeju Island, Republic of Korea, Oct. 2022.

32. Wang, Y., N. Cyprien, T. Hu, and X. Liao, "IRS aided OAM-MIMO communication," 2021 International Symposium on Antennas and Propagation (ISAP), 1-2, Taipei, Taiwan, 2021.

33. Feng, Q., X. Kong, M. Shan, Y. Lin, L. Li, and T. J. Cui, "Multi-orbital-angular-momentum-mode vortex wave multiplexing and demultiplexing with shared-aperture reflective metasurfaces," Physical Review Applied, Vol. 17, No. 3, 2022.
doi:10.1103/PhysRevApplied.17.034017

34. Ali, A., M. Khalily, D. Serghiou, and R. Tafazolli, "Reflective metasurface with steered OAM beams for THz communications," IEEE Access, Vol. 11, 12394-12401, 2023.
doi:10.1109/ACCESS.2023.3242647

35. Chung, H., D. Kim, E. Choi, and J. Lee, "E-band metasurface-based orbital angular momentum multiplexing and demultiplexing," Laser & Photonics Reviews, Vol. 16, No. 6, 2100456, 2022.
doi:10.1002/lpor.202100456

36. Grbic, A. and R. Merlin, "Near-field focusing plates and their design," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3159-3165, 2008.
doi:10.1109/TAP.2008.929436

37. Peatross, J. and M. Ware, "Physics of light and optics," Brigham Young University, 2015.

38. Cai, W., R. Liu, Y. Liu, M. Li, and Q. Liu, "Intelligent reflecting surface assisted multi-cell multi-band wireless networks," 2021 IEEE Wireless Communications and Networking Conference (WCNC), 1-6, Nanjing, China, 2021.