Department of Electronics & Instrumentation Engineering
Odisha University of Technology and Research
India
HomepageDepartment of Electronics & Instrumentation Engineering
Odisha University of Technology and Research
India
HomepageDepartment of Electronics & Instrumentation Engineering
Odisha University of Technology and Research
India
HomepageDepartment of Electronics & Instrumentation Engineering
Odisha University of Technology and Research
India
Homepage1. Tariq, F., M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, "A speculative study on 6G," IEEE Wireless Communications, Vol. 27, No. 4, 118-125, 2020.
doi:10.1109/MWC.001.1900488
2. Tariq, F., M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, "A speculative study on 6G," IEEE Wireless Communications, Vol. 27, No. 4, 118-125, 2020.
doi:10.1109/MWC.001.1900488
3. Frezza, F., L. Pajewski, and G. Schettini, "Fractal two-dimensional electromagnetic bandgap structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 220-227, 2004.
doi:10.1109/TMTT.2003.821273
4. Wang, L., L. Han, and W. Guo, "Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting," Light Sci. Appl., Vol. 11, 53, 2022.
doi:10.1038/s41377-022-00741-8
5. Viti, L., A. Politano, K. Zhang, and M. S. Vitiello, "Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes," ESI for Nanoscale, Vol. 4, 22-24, 2018.
6. Viti, L., J. Hu, D. Coquillat, et al. "Black phosphorus terahertz photodetectors," Adv. Materials, Vol. 27, 5567-5572, 2015.
doi:10.1002/adma.201502052
7. Xu, H., C. Guo, J. Zhang, et al. "PtTe2-based type-II dirac semimetal and its van der waals heterostructure for sensitive room temperature terahertz photodetection," Nano Micro. Small, Vol. 15, 24-29, 2019.
8. Tang, W., A. Politano, and W. Guo, "Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator," Advanced Functional Materials, Vol. 28, No. 31, 1801786, 2018.
doi:10.1002/adfm.201801786
9. Liu, C., L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, "Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene," Adv. Opt. Mater., Vol. 6, 22-28, 2018.
10. Viti, L., A. Politano, and M. S. Vitiello, "Black phosphorus nanodevices at terahertz frequencies: Photodetectors and future challenges," APL Mater., Vol. 5, No. 3, 2017.
doi:10.1063/1.4979090
11. Viti, L., J. Hu, D. Coquillat, A. Politano, C. Consejo, W. Knap, and M. S. Vitiello, "Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies," Advanced Materials, Vol. 28, No. 34, 7390-7396, 2016.
doi:10.1002/adma.201601736
12. Viti, L., D. Coquillat, and A. Politano, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, No. 1, 80-87, 2016.
doi:10.1021/acs.nanolett.5b02901
13. Rizza, C., D. Dutta, B. Ghosh, F. Alessandro, et al. "Extreme optical anisotropy in the type-II dirac semimetal NiTe2 for applications to nanophotonics," ACS Applied Nano Materials, Vol. 5, No. 12, 18531-18536, 2022.
doi:10.1021/acsanm.2c04340
14. Walser, R. M., A. Valanju, and P. W. Wins, "New smart materials for adaptive microwave signature control," Proc. SPIE, Vol. 3, 128-139, 1993.
doi:10.1117/12.148466
15. Diaz, R. E. and S. A. Clavijo, "Articial magnetic conductor," Encyclopedia of RF and Microwave Engineering, Chang K. C. ed., John Wiley & Sons, Inc., New York, 2005.
16. Yanghyo, K., F. Yang, and A. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
17. Li, L., Z. Wu, K. Li, et al. "Frequency-reconfigurable quasi-sierpinski antenna integrating with dual-band high-impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4459-4467, 2014.
doi:10.1109/TAP.2014.2331992
18. Sievenpiper, D. F., "High-impedance electromagnetic surfaces. PhD dissertation,", University of California, Los Angeles, 1999.
19. Liu, T., X. Y. Cao, J. J. Ma, and X. Wen, "Enhanced bandwidth uniplanar compact electromagnetic bandgap structure with coplanar meander line inductance," Electronics Letters, Vol. 44, 260-261, 2008.
doi:10.1049/el:20083600
20. Li, Y. Q., H. Zhang, Y.-Q. Fu, and N.-C. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008.
21. Dewan, R., M. K. A. Rahim, M. R. Hamid, et al. "Articial magnetic conductor for various antenna applications: An overview," Int. J. RF Microw. Comput. Aided Eng., Vol. 27, No. 6, 123-135, 2017.
doi:10.1002/mmce.21105
22. Ashyap, A. Y. I., S. H. B. Dahlan, Z. Z. Abidin, et al. "An overview of electromagnetic band-gap integrated wearable antennas," IEEE Access, Vol. 8, 7641-7658, 2020.
doi:10.1109/ACCESS.2020.2963997
23. Ashyap, A. Y. I., S. H. Dahlan, Z. Z. Abidin, et al. "Flexible antenna with HIS based on PDMS substrate for WBAN applications," IEEE International RF and Microwave Conference (RFM), Vol. 3, 69-72, Penang, Malaysia, 2018.
24. Sahu, N. K. and S. K. Mishra, "Compact dual-band dual-polarized monopole antennas using via-free metasurfaces for off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 7, 1358-1362, 2022.
doi:10.1109/LAWP.2022.3167849
25. Sahu, N. K. and S. K. Mishra, "Polarization-converting metasurface inspired dual-band dual- circularly polarized monopole antennas for off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 1, 194-198, 2023.
doi:10.1109/LAWP.2022.3206913
26. Sahu, N. K. and S. K. Mishra, "A compact low SAR and high gain circularly polarized AMC integrated monopole antenna for WBAN applications," Progress In Electromagnetics Research C, Vol. 113, 211-226, 2021.
doi:10.2528/PIERC21051702
27. Sahu, N. K. and S. K. Mishra, "Anisotropic metasurface inspired circularly-polarized monopole antenna for OFF body communications," IEEE Wireless Antenna and Microwave Symposium (WAMS), Vol. 1, 1-4, Rourkela, India, 2022.
28. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001
29. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low prole wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559
30. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135
31. Goussetis, G., A. P. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 82-89, 2006.
doi:10.1109/TAP.2005.861575
32. Zhang, W., Y. Liu, and Y. Jia, "Circularly polarized antenna array with low RCS using metasurface-inspired antenna units," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1453-1457, 2019.
doi:10.1109/LAWP.2019.2919716
33. Alshrafi, W., V. Ekaterinichev, and D. Heberling, "Wideband crossed dipoles antenna for all GNSS bands using wideband AMC," Proc. 12th Eur. Conf. Antennas Propag., Vol. 2, 1-4, London, U.K., 2018.
34. Zhu, H., Y. Qiu, and G. Wei, "A broadband dual-polarized antenna with low profile using nonuniform metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 1134-1138, 2019.
doi:10.1109/LAWP.2019.2910994
35. Sahu, N. K. and S. K. Mishra, "Cavity model analysis of dual polarized microstrip antennas for wireless body area network application," Int. J. Syst. Assur. Eng. Manag., 2022.
36. Sahu, N. K. and S. K. Mishra, "Analysis of omnidirectional antenna systems using cavity model," IETE Journal of Research, 2021.
37. Sahu, N. K. and A. K. Sharma, "The investigation on bandwidth enhancement of microstrip slot antennas," Proc. of the Int. Conf. on Wireless Communication, Signal Processing And Networking, WISPNET, Vol. 1, 953-956, 2016.
38. Sahu, N. K. and A. K. Sharma, "The investigation of pattern and frequency recongurable microstrip slot antenna using PIN diodes," 2017 Progress In Electromagnetics Research Symposium --- Spring (PIERS),, St. Petersburg, Russia, 2017.
39. Sahu, N. K. and A. K. Sharma, "A study on frequency reconfiguration of microstrip slot antenna using PIN diodes," Proc. of the Int. Conf. on Communication System, Computing and IT Application, CSCITA, 2017.
40. Chu, Q. X., D. L. Wen, and Y. Luo, "A broadband ±45◦ dual-polarized antenna with Y-shaped feeding lines," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 483-490, 2015.
doi:10.1109/TAP.2014.2381238
41. Zhou, X., J. Shi, D. Feng, and H. Zhai, "A low-profile dual-polarized MIMO antenna array with high isolation," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 1, 1-3, Chengdu, China, 2018.
42. Wang, W. and Y. Zheng, "Improved design of the Vivaldi dielectric notch radiator with etched slots and a parasitic patch," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1064-1068, 2018.
doi:10.1109/LAWP.2018.2832098
43. Goudarzi, A., M. Movahhedi, M. M. Honari, H. Saghlatoon, R. Mirzavand, and P. Mousavi, "Wideband high-gain circularly polarized resonant cavity antenna with a thin complementary partially reflective surface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 532-537, 2021.
doi:10.1109/TAP.2020.3001443
44. Feng, B., X. He, J.-C. Cheng, Q. Zeng, and C.-Y.-D. Sim, "A low-profile differentially fed dual-polarized antenna with high gain and isolation for 5G microcell communications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 90-99, 2020.
doi:10.1109/TAP.2019.2935091
45. Nie, Z., H. Zhai, L. Liu, J. Li, D. Hu, and J. Shi, "A dual-polarized frequency-reconfigurable low-profile antenna with harmonic suppression for 5G application," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1228-1232, 2019.
doi:10.1109/LAWP.2019.2913170
46. Yang, S., L. Liang, W. Wang, Z. Fang, and Y. Zheng, "Wideband gain enhancement of an AMC cavity-backed dual-polarized antenna," IEEE Transactions on Vehicular Technology, Vol. 70, No. 12, 12703-12712, 2021.
doi:10.1109/TVT.2021.3119643
47. Wang, W., Y. Chen, S. Yang, X. Zheng, and Q. Cao, "Design of a broadband electromagnetic wave absorber using a metamaterial technology," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 15, 2080-2091, 2015.
doi:10.1080/09205071.2015.1006733
48. Shi, S., et al. "Wideband planar phased array antenna based on articial magnetic conductor surface," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 10, 1909-1913, 2020.
doi:10.1109/TCSII.2019.2958984
49. Lee, J.-N., K.-C. Lee, and P.-J. Song, "The design of a dual-polarized small base station antenna with high isolation having a metallic cube," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 791-795, 2015.
doi:10.1109/TAP.2014.2379939
50. Ye, L. H., X. Y. Zhang, Y. Gao, and Q. Xue, "Wideband dual-polarized four-folded-dipole antenna array with stable radiation pattern for base-station applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4428-4436, 2020.
doi:10.1109/TAP.2020.2969749
51. Cui, Y., Y. Niu, Y. Qin, and R. Li, "A new high-isolation broadband flush-mountable dual-polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7342-7347, 2018.
doi:10.1109/TAP.2018.2867036
52. Zhu, J., S. Li, S. Liao, and Q. Xue, "Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 458-462, 2018.
doi:10.1109/LAWP.2018.2795018
53. Chu, L. J., "Physical limitations of omnidirectional antennas," J. Appl. Phys., Vol. 19, 1163-1175, 1948.
doi:10.1063/1.1715038
54. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, 1479-1484, 1947.
doi:10.1109/JRPROC.1947.226199
55. Milias, C., R. B. Andersen, P. I. Lazaridis, et al. "Miniaturized multiband metamaterial antennas with dual-band isolation enhancement," IEEE Access, Vol. 10, 64952-64964, 2022.
doi:10.1109/ACCESS.2022.3183800
56. Zhu, S., H. Liu, and P. Wen, "A new method for achieving miniaturization and gain enhancement of vivaldi antenna array based on anisotropic metasurface," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1952-1956, 2019.
doi:10.1109/TAP.2019.2891220
57. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, 2113-2130, 2006.
doi:10.1109/TAP.2006.877179
58. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 963-966, 2011.
59. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1031-1038, 2010.
60. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 963-966, 2011.
61. Odabasi, H., F. L. Teixeira, and D. O. Guney, "Electrically small, complementary electric-field-coupled resonator antennas," J. Appl. Phys., Vol. 113, No. 8, Art. No. 084903, 2013.
62. Milias, C., R. B. Andersen, P. I. Lazaridis, et al. "Miniaturized multiband metamaterial antennas with dual-band isolation enhancement," IEEE Access, Vol. 10, 64952-64964, 2022.
63. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2175-2182, 2012.
64. Sharawi, M. S., M. U. Khan, A. B. Numan, and D. N. Aloi, "A CSRR loaded MIMO antenna system for ISM band operation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4265-4274, 2013.
65. Zhu, J. and G. V. Eleftheriades, "Dual-band metamaterial-inspired small monopole antenna forWiFi applications," Electron. Lett., Vol. 45, No. 22, 1104-1106, 2009.
66. Zhu, K., C. Li, L. Li, Y.-M. Cai, and C.-H. Liang, "Design of electrically small metamaterial antenna with ELC and EBG loading," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 678-681, 2013.
67. Atrash, M. E., O. F. Abdalgalil, I. S. Mamoud, M. A. Abdallaand, and S. R. Zahran, "Wearable high gain low SAR antenna loaded with backed all-textile EBG for WBAN applications," IET Microw. Antennas Propag., Vol. 14, No. 8, 791-799, 2020.
68. Ashyap, A. Y. I., et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2550-2553, 2017.
69. Alemaryeen, A. and S. Noghanian, "On-body low-profile textile antenna with artificial magnetic conductor," IET Microw., Antennas Propag., Vol. 12, No. 4, 627-635, 2018.
70. Atrash, M. El, M. A. Abdalla, and H. M. Elhennawy, "A compact highly efficient II-section CRLH antenna loaded with textile AMC for wireless body area network applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 648-657, 2021.
71. Paracha, K. N., S. K. A. Rahim, P. J. Soh, et al. "A low profile, dual-band, dual polarized antenna for indoor/outdoor wearable application," IEEE Access, Vol. 7, 33277-33288, 2019.
72. Chuquitarco-Jimenez, C. A., E. Antonino-Daviu, and M. Ferrando-Bataller, "Dual-band antenna with AMC for wearable applications," Proc. 15th Eur. Conf. Antennas Propag. (EuCAP), 1-4, 2021.
73. Yin, B., M. Ye, Y. Yu, and J. Gu, "A dual-band, miniaturized, AMC-based wearable antenna for health monitoring applications," Progress In Electromagnetics Research C, Vol. 112, 165-177, 2021.
74. Ashyap, A. Y. I., Z. Z. Abidin, S. H. Dahlan, et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2550-2553, 2017.
75. Mersani, A., L. Osman, and J. M. Ribero, "Performance of dualband AMC antenna for wireless local area network applications," IET Microw., Antennas Propag., Vol. 12, No. 6, 872-878, 2018.
76. Alemaryeen, A. and S. Noghanian, "Crumpling effects and specific absorption rates of flexible AMC integrated antennas," IET Microw., Antennas Propag., Vol. 12, No. 4, 627-635, 2018.
77. Gao, G.-P., B. Hu, S.-F. Wang, and C. Yang, "Wearable circular ring slot antenna with EBG structure for wireless body area network," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 434-437, 2018.
78. Wang, M., Z. Yang, J. Wu, et al. "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3076-3086, June 2018.
79. Abirami, B. S. and E. F. Sundarsingh, "EBG-backed flexible printed Yagi-Uda antenna for on-body communication," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3762-3765, 2017.
80. Jiang, W., Y. Liu, S. Gong, and T. Hong, "Application of bionics in antenna radar cross section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1275-1278, 2009.
81. Wang, W., S. Gong, X. Wang, Y. Guan, and W. Jiang, "Differential evolution algorithm and method of moments for the design of low-RCS antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 295-298, 2010.
82. Pozar, D. M., "RCS reduction for a microstrip antenna using a normally biased ferrite substrate," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 5, 196-198, 1992.
83. He, Q., S. Sun, S. Xiao, and L. Zhou, "High-efficiency metasurfaces: Principles, realizations, and applications," Adv. Opt. Mater., Vol. 6, No. 19, 1-23, 2018.
84. Li, Y.-Q., H. Zhang, Y.-Q. Fu, and N.-C. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008.
85. Jia, Y. and Y. Liu, "Low-RCS and high-gain broadband circularly polarized antenna," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1923-1924, San Diego, CA, USA, 2017.
86. Fan, Y., J.Wang, Y. Li, J. Zhang, Y. Han, and S. Qu, "Low-RCS and high-gain circularly polarized metasurface antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7197-7203, 2019.
87. Xi, Y., W. Jiang, K. Wei, T. Hong, T. Cheng, and S. Gong, "Wideband RCS reduction of microstrip antenna array using coding metasurface with low Q resonators and fast optimization method," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 656-660, 2022.
88. Kang, X., J. Su, H. Zhang, Z. Li, and Y. L. Yang, "Ultra-wideband RCS reduction of microstrip antenna array by optimized multi-element metasurface," Electron. Lett., Vol. 53, 520-522, 2017.
89. Zhang, C., X. Cao, J. Gao, et al. "Shared aperture metasurface for bi-functions: Radiation and low backward scattering performance," IEEE Access, Vol. 7, 56547-56555, 2019.
90. Zhang, C., J. Gao, X. Cao, L. Xu, and J. Han, "Low scattering microstrip antenna array using coding artificial magnetic conductor ground," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 869-872, 2018.
91. Liao, W.-J., W.-Y. Zhang, Y.-C. Hou, S.-T. Chen, C. Y. Kuo, and M. Chou, "An FSS-integrated low-RCS radome design," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2076-2080, 2019.
92. Jia, Y. and Y. Liu, "Low-RCS and high-gain broadband circularly polarized antenna," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1923-1924, San Diego, CA, USA, 2017.
93. Dong, G., "Ultra-broadband perfect cross polarization conversion metasurface," Opt. Commun., Vol. 365, No. 7, 108-112, 2015.
94. Li, Y., "An ultra-wideband linear-to-circular polarization conversion metasurface," Chin. Phys. B, Vol. 29, No. 10, 1-13, 2020.
95. Gao, X., X. Y. Yu, W. P. Cao, Y. N. Jiang, and X. H. Yu, "Ultra-wideband circular-polarization converter with micro-split jerusalemcross metasurfaces," Chin. Phys. B, Vol. 25, No. 12, 1-7, 2016.
96. Karamirad, M., C. Ghobadi, and J. Nourinia, "Metasurfaces for wideband and efficient polarization rotation," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1799-1804, 2021.
97. Yang, X., S. Yu, N. Kou, F. Long, Z. Ding, and Z. Zhang, "Ultrathin triband reflective cross-polarization articial electromagnetic metasurface," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 10, 1491-1501, 2020.
98. Liu, Y., X. Dang, L. Li, and H. Yin, "Dual-wideband cross polarization conversion metasurface based on a symmetric split ring resonator," 2019 Photonics & Electromagnetics Research Symposium --- Fall (PIERS --- Fall), Xiamen, China, 2019.
99. Zheng, Q., C. Guo, and J. Ding, "Wideband metasurface-based re ective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1459-1463, August 2018.
100. Yang, W., K.-W. Tam, W.-W. Choi, W. Che, and H. T. Hui, "Novel polarization rotation technique based on an articial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6206-6216, 2014.
101. Yang, H., X. Liu, Y. Fan, and L. Xiong, "Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4189-4199, 2022.
102. Supreeyatitikul, N., T. Lertwiriyaprapa, and C. Phongcharoenpanich, "S-shaped metasurface- based wideband circularly polarized patch antenna for C-band applications," IEEE Access, Vol. 9, 23944-23955, 2021.
103. Zheng, Q., C. Guo, and J. Ding, "Wideband and low RCS circularly polarized slot antenna based on polarization conversion of metasurface for satellite communication application," Microw. Opt. Technol. Lett., Vol. 60, No. 3, 679-685, 2018.
104. Liu, Y., Y.-X. Huang, Z.-W. Liu, S.-T. Cai, X.-M. Xiong, and J. Guo, "Design of a compact wideband CP metasurface antenna," Int. J. RF Microw. Comput.-Aided Eng., Vol. 30, No. 10, 2020.