Vol. 111
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-06-24
Highly Packaged LTCC Coupler Using Vertically Stacked LC-Elements for 1 and 1.5 Tesla MRI Applications
By
Progress In Electromagnetics Research Letters, Vol. 111, 55-60, 2023
Abstract
A highly packaged coupler using vertically placed inductors and capacitors (LC)-elements is proposed for 1 and 1.5 Tesla (T) magnetic resonance imaging (MRI) applications. The coupler is made on a 24-layer thickness low temperature co-fired ceramic (LTCC) substrate, and the full integration is reached by heaping up LC-elements in the vertical dimension. The coupler has a smallest reported size of only 0.0035 × 0.0021 × 0.001λg and a wide fractional bandwidth (FBW) of 44%. The measured in-band phase difference between the coupled and through ports and the amplitude imbalance are less than 91°±0.5° and 0.75 dB, respectively. Comparisons and discussions are also implemented.
Citation
Linzi Liu, Zheng Pan, Gang Shi, and Bo Zhou, "Highly Packaged LTCC Coupler Using Vertically Stacked LC-Elements for 1 and 1.5 Tesla MRI Applications," Progress In Electromagnetics Research Letters, Vol. 111, 55-60, 2023.
doi:10.2528/PIERL23043002
References

1. Zhou, Y., P. C. M. van Zijl, X. Xu, et al. "Magnetic resonance imaging of glycogen using its magnetic coupling with water," Proceedings of the National Academy of Sciences, Vol. 117, No. 6, 3144-3149, 2020.
doi:10.1073/pnas.1909921117

2. Zhou, B., W. Sheng, and Y. Zheng, "Miniaturized and wideband lumped LTCC branch-line coupler for dozens of megahertz applications," Microw. Opt. Technol. Lett., Vol. 56, No. 9, 2001-2005, 2014.
doi:10.1002/mop.28548

3. Zhu, L., "Miniaturized lumped coupler with low frequency signals suppression," 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-3, Taiyuan, China, 2019.

4. Wang, Y., K. Ma, and S. Mou, "A compact branch-line coupler using substrate integrated suspended line technology," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 2, 95-97, 2016.
doi:10.1109/LMWC.2016.2517158

5. Zhou, B., X. Li, C. Li, L. Qian, and Z. Cai, "Broadband 180° hybrid for 5G applications," 2019 IEEE CPMT Symposium Japan (ICSJ), 195-199, Kyoto, Japan, 2019.

6. Ahn, H., I. Nam, and O. Lee, "An integrated lumped-element quadrature coupler with impedance transforming," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 2, 152-155, 2020.
doi:10.1109/LMWC.2019.2963178

7. Frye, R. C., S. Kapur, and R. C. Melville, "A 2-GHz quadrature hybrid implemented in CMOS technology," IEEE Journal of Solid-State Circuits, Vol. 38, No. 3, 550-555, 2003.
doi:10.1109/JSSC.2002.808287

8. Kazan, O., O. Memioglu, F. Kocer, A. Gundel, and C. Toker, "A lumped-element wideband 3-dB quadrature hybrid," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 6, 385-387, 2019.
doi:10.1109/LMWC.2019.2911648

9. Pan, L., Y. Wu, W. Wang, Y. Zheng, and Y. Liu, "A symmetrical broadband tight-coupled directional coupler with high directivity using three-folded-coupled lines," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 9, 3744-3748, 2022.
doi:10.1109/TCSII.2022.3169160

10. Hou, J.-A. and Y.-H. Wang, "A compact quadrature hybrid based on high-pass and low-pass lumped elements," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 8, 595-597, 2007.
doi:10.1109/LMWC.2007.901775

11. Microwave Office, Cadence Corporation, , El Segundo, CA.

12. Cadence Analyst, Cadence Corporation, , El Segundo, CA.