Vol. 118
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-08-23
Numerical Analysis of 1 X 4 Photonic Crystal Fiber Multiplexer
By
Progress In Electromagnetics Research M, Vol. 118, 127-136, 2023
Abstract
A brand-new four-channel mux system built entirely out of multicore photonic crystal fiber (PCF) structures, which permit wavelength multiplexing at 0.85, 1.19, 1.1, and 1.35 µm, has been confirmed. The multiplexer is a device that sends multiple messages or signals simultaneously via one communication channel. PCF is a category of optical fiber primarily according to the characteristics of photonic crystals, and it is an effective waveguide based on the interaction of microstructured materials with various refractive indices. Silica substance was used to fill up a few air-hole places to optimize the PCF mux structure along with coupling light between more nearby ports (cores) over the PCF axis. The low-index portions are air holes that may be found anywhere along the length of the fiber, and the background material is often natural silica.
Citation
Assia Ahlem Harrat, Mohammed Debbal, and Mohammed Chamse Eddine Ouadah, "Numerical Analysis of 1 X 4 Photonic Crystal Fiber Multiplexer," Progress In Electromagnetics Research M, Vol. 118, 127-136, 2023.
doi:10.2528/PIERM23042703
References

1. De, M., T. K. Gangopadhyay, and V. K. Singh, "Prospects of photonic crystal fiber as physical sensor: An overview," Sensors, Vol. 19, No. 3, 464, 2019.
doi:10.3390/s19030464

2. Knight, J., T. Birks, P. S. J. Russell, and J. De Sandro, "Properties of photonic crystal fiber and the effective index model," JOSA A, Vol. 15, No. 3, 748-752, 1998.
doi:10.1364/JOSAA.15.000748

3. Van, L. C., K. D. Xuan, T. Le Canh, T. T. Doan, T. N. Thi, H. Van Le, and , "Supercontinuum generation in chalcogenide photonic crystal fiber infiltrated with liquid," Optical Materials, Vol. 137, 113547, 2023.
doi:10.1016/j.optmat.2023.113547

4. Liu, Y., et al., "Highly sensitive temperature sensor based on Sagnac interferometer using photonic crystal fiber with circular layout," Sensors and Actuators A: Physical, Vol. 314, 112236, 2020.
doi:10.1016/j.sna.2020.112236

5. Du, H., X. Sun, Y. Hu, X. Dong, and J. Zhou, "High sensitive refractive index sensor based on cladding etched photonic crystal fiber Mach-Zehnder interferometer," Photonic Sensors, Vol. 9, 126-134, 2019.
doi:10.1007/s13320-019-0532-2

6. Butt, M., S. N. Khonina, and N. Kazanskiy, "Recent advances in photonic crystal optical devices: A review," Optics & Laser Technology, Vol. 142, 107265, 2021.
doi:10.1016/j.optlastec.2021.107265

7. Kumar, D., M. Khurana, M. Sharma, and V. Singh, "Analogy of gold, silver, copper and aluminium based ultra-sensitive surface plasmon resonance photonic crystal fiber biosensors," Materials Today: Proceedings, 2023.

8. Guo, Z., J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, "Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 48, 67-76, 2016.
doi:10.2528/PIERM15122302

9. Ouadah, M. C. E., M. Debbal, H. Chikh-Bled, and M. Bouregaa, "Effect of the temperature and the geometrical parameters on the modal properties of circular photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 115, 1-10, 2022.

10. Li, W., T. Matniyaz, S. Gafsi, et al. "151W monolithic diffraction-limited Yb-doped photonic bandgap fiber laser at ~978 nm," Optics Express, Vol. 27, No. 18, 24972-24977, 2019.
doi:10.1364/OE.27.024972

11. Gangwar, R. K., A. K. Pathak, J. Qin, and X. Wang, "Physics of photonic crystals and applications," Modern Luminescence from Fundamental Concepts to Materials and Applications, 313-327, Elsevier, 2023.

12. Li, M., R. Singh, M. S. Soares, C. Marques, B. Zhang, and S. Kumar, "Convex fiber-tapered seven core fiber-convex fiber (CTC) structure-based biosensor for creatinine detection in aquaculture," Optics Express, Vol. 30, No. 8, 13898-13914, 2022.
doi:10.1364/OE.457958

13. Kiroriwal, M. and P. Singal, "Broadband mid-infrared supercontinuum generation in AlGaAs photonic crystal fibers by liquid infiltration and rod-filling approaches," Journal of Computational Electronics, 1-8, 2023.

14. Parandin, F. and A. Sheykhian, "Design and simulation of a 2 x 1 all-optical multiplexer based on photonic crystals," Optics & Laser Technology, Vol. 151, 108021, 2022.
doi:10.1016/j.optlastec.2022.108021

15. Kumar, C. and G. Kumar, "Performance evaluation of OADM for super dense wavelength division multiplexing system," Progress In Electromagnetics Research Letters, Vol. 85, 131-135, 2019.
doi:10.2528/PIERL19022503

16. Geng, Y., L. Wang, Y. Xu, A. Kumar, X. Tan, and X. Li, "Wavelength multiplexing of four-wave mixing based fiber temperature sensor with oil-filled photonic crystal fiber," Optics Express, Vol. 26, No. 21, 27907-27916, 2018.
doi:10.1364/OE.26.027907

17. Amphawan, A., S. Chaudhary, T.-K. Neo, M. Kakavand, and M. Dabbagh, "Radio-over-free space optical space division multiplexing system using 3-core photonic crystal fiber mode group multiplexers," Wireless Networks, Vol. 27, No. 1, 211-225, 2021.
doi:10.1007/s11276-020-02447-4

18. Xiong, Y., T. Umeda, X. Zhang, et al. "Photonic crystal circular-defect microcavity laser designed for wavelength division multiplexing," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, No. 6, 1-7, 2018.
doi:10.1109/JSTQE.2018.2846053

19. Priyadharshini, C., R. Devika, S. Selvendran, and A. S. Raja, "Investigating the cross core octagonal photonic crystal fiber with high birefringence: A design and analysis study," Materials Today: Proceedings, 2023.

20. Malka, D. and G. Katz, "An eight-channel C-band demux based on multicore photonic crystal fiber," Nanomaterials, Vol. 8, No. 10, 845, 2018.
doi:10.3390/nano8100845

21. Dadabayev, R. and D. Malka, "A visible light RGB wavelength demultiplexer based on polycarbonate multicore polymer optical fiber," Optics & Laser Technology, Vol. 116, 239-245, 2019.
doi:10.1016/j.optlastec.2019.03.034

22. Gelkop, B., L. Aichnboim, and D. Malka, "RGB wavelength multiplexer based on polycarbonate multicore polymer optical fiber," Optical Fiber Technology, Vol. 61, 102441, 2021.
doi:10.1016/j.yofte.2020.102441