Vol. 178
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-08-14
A Novel Noncontact Ku-Band Microwave Radiometer for Human Body Temperature Measurements
By
Progress In Electromagnetics Research, Vol. 178, 18-36, 2023
Abstract
In emergency departments and ICUs, a novel noncontact thermometer is urgently required to measure physical temperatures through common clothing to accomplish body temperature precise measurement for critical patients. Hence, a Ku band digital auto gain compensative microwave radiometer is proposed to get a higher theoretical temperature measurement sensitivity than a Dicke radiometer, benefit miniaturization design and reduce attenuation caused by common clothing. Meanwhile, a novel compensation method for receiver calibration is proposed to improve temperature sensitivity under non-ideal conditions, and the revised systematic calibration method is elaborated. Furthermore, in order to invert body physical temperatures through clothing, a microwave thermal radiation transmission model of clothed human body is constructed, and the microwave radiation apparent temperature equation of clothed human body is derived. Importantly, three groups of experiments are set up to confirm the designed radiometer's performance, especially the biological tissue temperature measurement. Results show that: 1) the designed radiometer has high temperature sensitivity and accuracy for unsheltered targets; 2) amplitude attenuation caused by cotton cloth for Ku band microwave is much smaller than that for infrared thermal radiation; 3) the designed radiometer can track physical temperatures of targets (such as water and swine skin tissue) sheltered or covered by cotton cloth relatively accurately. In conclusion, our designed Ku band microwave radiometer is certificated to have outstanding performance in temperature measurement for biological tissue through common clothing, which can be developed into a promising product in medical monitoring.
Citation
Hang Tian, Xiaodong Zhuge, Anyong Hu, Qingli Dou, and Jungang Miao, "A Novel Noncontact Ku-Band Microwave Radiometer for Human Body Temperature Measurements," Progress In Electromagnetics Research, Vol. 178, 18-36, 2023.
doi:10.2528/PIER23042503
References

1. Bjarnason, J. E., T. L. J. Chan, A. W. M. Lee, et al. "Millimeter-wave, terahertz, and mid-infrared transmission through common clothing," Applied Physics Letters, Vol. 85, No. 4, 519-521, 2004.
doi:10.1063/1.1771814

2. Lin, S., Microwave and Millimeter-Wave Remote Sensing for Security Applications, 372 pages, Jeffrey A. Nanzer, Artech House, 2012, ISBN 978-1-60807-172-2[J].

3. Enander, B. and G. Larson, "Microwave radiometric measurements of the temperature inside a body," Electronics Letters, Vol. 10, No. 15, 317-317, 1974.
doi:10.1049/el:19740250

4. Barrett, A. H. and P. C. Myers, "Subcutaneous temperatures: A method of noninvasive sensing," Science, Vol. 190, No. 4215, 669-671, 1975.
doi:10.1126/science.1188361

5. Maruyma, K., S. Mizushina, T. Sugiura, et al. "Feasibility of noninvasive measurement of deep brain temperature in newborn infants by multifrequency microwave radiometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 2141-2147, 2000.
doi:10.1109/22.884206

6. Hand, J. W., G. M. J. Van Leeuwen, S. Mizushina, et al. "Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling," Physics in Medicine & Biology, Vol. 46, No. 7, 1885, 2001.
doi:10.1088/0031-9155/46/7/311

7. Popovic, Z., R. Scheeler, P. Momenroodaki, et al. Microwave thermometer for internal body temperature retrieval, U.S. Patent Application 15/608,284[P], Nov. 30, 2017.

8. Momenroodaki, P., W. Haines, M. Fromandi, et al. "Noninvasive internal body temperature tracking with near-field microwave radiometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 5, 2535-2545, 2018.
doi:10.1109/TMTT.2017.2776952

9. McGrath, J. A., R. A. J. Eady, and F. M. Pope, "Anatomy and organization of human skin," Rook's Textbook of Dermatology, Vol. 1, 3.2-3.80, 2004.

10. Black, D., J. Vora, M. Hayward, et al. "Measurement of subcutaneous fat thickness with high frequency pulsed ultrasound: Comparisons with a caliper and a radiographic technique," Clinical Physics and Physiological Measurement, Vol. 9, No. 1, 57, 1988.
doi:10.1088/0143-0815/9/1/005

11. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine & Biology, Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

12. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissue II: Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

13. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine & Biology, 41, 1996.

14. Bigu-Del-Blanco, J., C. Romero-Sierra, and J. A. Tanner, "Some theory and preliminary experiments on microwave radiometry of biological systems," S-MTT International Microwave Symposium Digest, 41-44, 1974.
doi:10.1109/MWSYM.1974.1123473

15. Mamouni, A., Y. Leroy, M. Samsel, and M. Gautherie, "Radiothermometrie micro-onde a 9 GHz: Applications aux cancers du sein et a des localisations tumorales diverses. Resultats preliminaires," Microwave Power Symposium 1979, XIVe Symposium International sur les Applications energetiques des Micro-ondes, Monaco, Jun. 11-15, 1979.

16. Mamouni, A., D. D. N'Guven, M. Robillard, M. Chive, and Y. Leroy, "Physical basis and technology of microwave radiometry," Proc. SPIE 0211, Optics and Photonics Applied to Medicine, May 29, 1980.

17. Gautherie, M., A. Mamouni, M. Samsel, J. L. Guerquin-Kern, Y. Leroy, and C. Gros, "Microwave radiothermometry (9 GHz) applied to breast cancer," Proc. SPIE 0211, Optics and Photonics Applied to Medicine, May 29, 1980.

18. Robert, J., J. Edrich, Y. Leroy, A. Mamouni, J. M. Escanye, and P. Thouvenot, "Clinical applications of microwave thermography," Proc. SPIE 0211, Optics and Photonics Applied to Medicine, May 29, 1980.

19. Abdul-Razzak, M. M., B. A. Hardwick, G. L. Hey-Shipton, et al. "Microwave thermography for medical applications," IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education, Reviews), Vol. 134, No. 2, 171-174, 1987.
doi:10.1049/ip-a-1.1987.0023

20. Poikalainen, V. and J. Praks, "The use of microwave thermometer for the determination of cows' body surface temperature," Transactions of the Estonian Academic Agricultural Society (Estonia), 1998.

21. Kanakov, V. A. and A. G. Kislyakov, "Human-body temperature measurements using contact radiometer with built-in calibrators," Radiophysics & Quantum Electronics, Vol. 42, No. 2, 150-156, 1999.
doi:10.1007/BF02677554

22. Tipa, R. and O. Baltag, "Microwave thermography for cancer detection," Romanian Journal of Physics, Vol. 51, No. 3/4, 371, 2006.

23. Stephan, K. D., J. B. Mead, D. M. Pozar, et al. "A near field focused microstrip array for a radiometric temperature sensor," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1199-1203, 2007.
doi:10.1109/TAP.2007.893429

24. David, J. I., M. B. Zemel, C. T. Lyster, and N. Feld, Passive microwave assessment of human body core to surface temperature gradients and basal metabolic rate, USA, US 8,013,745 B2[P], Sep. 6, 2011.

25. Zhao, K., J. X. Shi, and H. D. Zhang, "High sensitivity airborne l-band microwave radiometer measurements of sea surface salinity," Journal of Remote Sensing, 2008.

26. Jian, S., Z. Kai, J. Tao, et al. "A new airborne Ka-band double-antenna microwave radiometer for cloud liquid water content measurement," Proceedings of SPIE --- The International Society for Optical Engineering, Vol. 8866, 17, 2013.

27. Ulaby, F. T., R. K. Moore, and A. K. Fung, "Microwave remote sensing: Active and passive. Volume 1 | Microwave remote sensing fundamentals and radiometry," Remote Sensing A, Vol. 2, No. 5, 355-356, 1981.

28. Wohlleben, R., H. Mattes, and O. Lochner, "Simple small primary feed for large opening angles and high aperture efficiency," Electronics Letters, Vol. 8, No. 19, 474-476, Sep. 21, 1972.
doi:10.1049/el:19720341

29. Milligan, T. A., Modern Antenna Design, 2nd Ed., Wiley, 2005.
doi:10.1002/0471720615.ch10

30. James, G. L., "Radiation properties of 90 conical horns," Electronics Letters, Vol. 13, No. 10, 293-294, May 12, 1977.
doi:10.1049/el:19770215

31. Silver, S., Microwave Antenna Theory and Design, Chapter 11, 1984.
doi:10.1049/PBEW019E

32. Clarricoats, P. J. B. and P. K. Saha, "Radiation pattern of a lens-corrected conical scalar horn," Electronics Letters, Vol. 5, No. 23, 592-593, Nov. 1969.
doi:10.1049/el:19690442

33. Neto, A., S. Maci, and P. J. I. de Maagt, "Reflections inside an elliptical dielectric lens antenna," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 145, No. 3, 243-247, Jun. 1998.
doi:10.1049/ip-map:19981884

34. Pohl, N., "A dielectric lens antenna with enhanced aperture efficiency for industrial radar applications," IEEE Middle East Conference on Antennas and Propagation (MECAP 2010), 1-5, 2010.

35. Van der Vorst, M. J. M., P. J. L. de Maagt, and M. H. A. J. Herben, "Effect of internal reflections on the radiation properties and input admittance of integrated lens antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 9, 1696-1704, Sep. 1999.
doi:10.1109/22.788611

36. Nguyen, N. T., R. Sauleau, and C. J. M. Perez, "Very broadband extended hemispherical lenses: Role of matching layers for bandwidth enlargement," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 1907-1913, Jul. 2009.
doi:10.1109/TAP.2009.2021884

37., https://www.pasternack.cn/wr-62-waveguide-gain-horn-antenna-15db-square-flange-pewan062-15-p.aspx..

38., https://www.pasternack.cn/wr-62-waveguide-standard-gain-horn-antenna-15-dbi-sma-pewan062-15elsf-p.aspx.

39. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2012.

40. Holmes, J., C. Balanis, and W. Truman, "Application of Fourier transforms for microwave radiometric inversions," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 6, 797-806, 1975.
doi:10.1109/TAP.1975.1141180

41. Truman, W., C. Balanis, and J. Holmes, "Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 1, 95-104, 1977.
doi:10.1109/TAP.1977.1141538

42. Li, Q., G. Wei, Z. Zhang, et al. "Brightness temperature of extended targets," ICMMT'98. 1998 International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No.98EX106), 483-487, 1998.

43. Li, Q., G. Wei, Z. Zhang, et al. "Models for the brightness temperature of extended targets at MM wave frequency," International Journal of Infrared and Millimeter Waves, Vol. 19, No. 9, 1247-1253, 1998.
doi:10.1023/A:1022629011120

44. Xiao, Z., J. Xu, and T. Hu, "Research on the transmissivity of some clothing materials at millimeter-wave band," 2008 International Conference on Microwave and Millimeter Wave Technology, 1750-1753, 2008.
doi:10.1109/ICMMT.2008.4540812

45. Susek, W., "Thermal microwave radiation for subsurface absolute temperature measurement," ACTA Phys. Pol. A, Vol. 118, 1246-1249, 2010.
doi:10.12693/APhysPolA.118.1246

46. Momenroodaki, P., Z. Popovic, and R. Scheeler, "A 1.4-GHz radiometer for internal body temperature measurements," 2015 European Microwave Conference (EuMC), 694-697, Paris, France, Sep. 7-10, 2015.

47. Jacobsen, S. and O. Klemetsen, "Improved detectability in medical microwave radio-thermometers as obtained by active antennas," IEEE Trans. Biomed. Eng., Vol. 55, 2778-2785, 2008.
doi:10.1109/TBME.2008.2002156

48. Bonds, Q., J. Gerig, T. M. Weller, and P. Herzig, "Towards core body temperature measurement via close proximity radiometric sensing," IEEE Sensors Journal, Vol. 12, 519-526, 2012.
doi:10.1109/JSEN.2011.2113332

49. Klemetsen, O., Y. Birkelund, S. K. Jacobsen, P. F. Maccarini, and P. R. Stauffer, "Design of medical radiometer front-end for improved performance," Progress In Electromagnetics Research B, Vol. 27, 289-306, 2011.
doi:10.2528/PIERB10101204

50. International Telecommunication Union Radiocommunication Assembly, Attenuation due to clouds and fog, Recommendation ITU-R P.840-8, 2019.

51. Mcintyre, M. K., B. Baker, T. J. Peacock, et al. "Initial characterization of the pig skin bacteriome and its effect on in vitro models of wound healing," The FASEB Journal, 30, 2016.

52. Abd, E., S. A. Yousef, M. N. Pastore, et al. "Skin models for the testing of transdermal drugs," Research & Reports in Transdermal Drug Delivery, Vol. 8, 163-176, 2016.

53. Paul, H., A. Jon, M. Krysta, et al. "Vital, porcine, gal-knockout skin transplants provide efficacious temporary closure of full-thickness wounds: Good laboratory practice-compliant studies in nonhuman primates," Journal of Burn Care & Research, Vol. 41, No. 2, 229-240, Official Publication of the American Burn Association, 2020.