School of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electronic Engineering, School of Computer Science and Communications Engineering
Jiangsu University
China
HomepageSchool of Physics and Electronic Engineering, School of Computer Science and Communications Engineering
Jiangsu University
China
Homepage1. Shi, C. Z., M. Dubois, Y. Wang, and X. Zhang, "High-speed acoustic communication by multiplexing orbital angular momentum," Proc. Natl. Acad. Sci. U. S. A., Vol. 114, No. 28, 7250-7253, 2017.
doi:10.1073/pnas.1704450114
2. Li, X. J., Y. Z. Li, Q. Y. Ma, G. P. Guo, J. Tu, and D. Zhang, "Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays," J. Appl. Phys., Vol. 127, No. 12, 124902, 2020.
doi:10.1063/1.5135991
3. Jimenez-Gambin, S., N. Jimenez, and F. Camarena, "Transcranial focusing of ultrasonic vortices by acoustic holograms," Phys. Re. Applied, Vol. 14, No. 15, 054070, 2020.
doi:10.1103/PhysRevApplied.14.054070
4. Cao, J. M., K. X. Yang, X. S. Fang, L. Guo, Y. Li, and Q. Cheng, "Holographic tomography of dynamic three-dimensional acoustic vortex beam in liquid," Appl. Phys. Lett., Vol. 119, No. 14, 143501, 2021.
doi:10.1063/5.0062529
5. Melde, K., E. Choi, Z. Wu, S. Palagi, T. Qiu, and P. Fischer, "Acoustic fabrication via the assembly and fusion of particles," Adv. Mater., Vol. 30, No. 3, 1704507, 2018.
doi:10.1002/adma.201704507
6. Lim, M. X., A. Souslov, V. Vitelli, and H. M. Jaeger, "Cluster formation by acoustic forces and active fluctuations in levitated granular matter," Nat. Phys., Vol. 15, No. 5, 460-464, 2019.
doi:10.1038/s41567-019-0440-9
7. Meng, L., F. Cai, F. Li, W. Zhou, L. Niu, and H. Zheng, "Acoustic tweezers," J. Phys. D: Appl. Phys., Vol. 52, No. 27, 273001, 2019.
doi:10.1088/1361-6463/ab16b5
8. Wu, P. Y., Z. Ya, Y. Li, M. T. Zhu, L. Zhang, Y. J. Zong, S. F. Guo, and M. X. Wan, "Focused acoustic vortex-regulated composite nanodroplets combined with checkpoint blockade for high-performance tumor synergistic therapy," ACS Appl. Mater. Inter., Vol. 14, No. 27, 30466, 2022.
doi:10.1021/acsami.2c02137
9. Zhang, L. K., "Reversals of orbital angular momentum transfer and radiation torque," Phys. Rev. Applied, Vol. 10, No. 3, 034039, 2018.
doi:10.1103/PhysRevApplied.10.034039
10. Li, Y. Z., G. P. Guo, J Tu, Q. Y. Ma, X. S. Guo, D. Zhang, and O. A. Sapozhnikov, "Acoustic radiation torque of an acoustic-vortex spanner exerted on axisymmetric objects," Appl. Phys. Lett., Vol. 112, No. 25, 254101, 2018.
doi:10.1063/1.5036976
11. Baresch, D., J. L. Thomas, and R. Marchiano, "Orbital angular momentum transfer to stably trapped elastic particles in acoustical vortex beams," Phys. Rev. Lett., Vol. 121, No. 7, 074301, 2018.
doi:10.1103/PhysRevLett.121.074301
12. Li, J. F., A. Crivoi, X. Y. Peng, L. Shen, Y. J. Pu, Z. Fan, and S. A. Cummer, "Three dimensional acoustic tweezers with vortex streaming," Commun. Phys., Vol. 4, No. 1, 113, 2021.
doi:10.1038/s42005-021-00617-0
13. Riaud, A., J. L. Thomas, E. Charron, A. Bussonniere, O. B. Matar, and M. Baudoin, "Anisotropic swirling surface acoustic waves from inverse filtering for on-chip generation of acoustic vortices," Phys. Rev. Applied, Vol. 4, No. 3, 034004, 2015.
doi:10.1103/PhysRevApplied.4.034004
14. Muelas-Hurtado, R. D., J. L. Ealo, and K. Volke-Sepulveda, "Active-spiral Fresnel zone plate with tunable focal length for airborne generation of focused acoustic vortices," Appl. Phys. Lett., Vol. 116, No. 11, 114101, 2020.
doi:10.1063/1.5137766
15. Huang, H. F. and H. M. Huang, "Millimeter-wave wideband high efficiency circular airy OAM multibeams with multiplexing OAM modes based on transmission metasurfaces," Progress In Electromagnetics Research, Vol. 173, 151-159, 2022.
doi:10.2528/PIER22022405
16. Liang, Z. and J. Li, "Extreme acoustic metamaterial by coiling up space," Phys. Rev. Lett., Vol. 108, No. 11, 114301, 2012.
doi:10.1103/PhysRevLett.108.114301
17. Cummer, S. A., J. Christensen, and A. Alu, "Controlling sound with acoustic metamaterials," Nat. Rev. Mater., Vol. 1, No. 3, 16001, 2016.
doi:10.1038/natrevmats.2016.1
18. Wu, Y., M. Yang, and P. Sheng, "Perspective: Acoustic metamaterials in transition," J. Appl. Phys., Vol. 123, No. 9, 090901, 2018.
doi:10.1063/1.5007682
19. Fan, X. D., Z. Zou, and L. Zhang, "Acoustic vortices in inhomogeneous media," Phys. Rev. Res., Vol. 1, No. 3, 032014, 2019.
doi:10.1103/PhysRevResearch.1.032014
20. Ma, F., J. Chen, and J. H. Wu, "Experimental study on performance of time reversal focusing," J. Phys. D: Appl. Phys., Vol. 53, No. 5, 055302, 2019.
doi:10.1088/1361-6463/ab5696
21. Jia, D., Y. Wang, Y. Ge, S. Q. Yuan, and H. X. Sun, "Tunable topological refractions in valley sonic crystals with triple valley hall phase transitions," Progress In Electromagnetics Research, Vol. 172, 13-22, 2021.
doi:10.2528/PIER21102002
22. Wang, B. B., Y. Ge, S. Q. Yuan, D. Jia, and H. X. Sun, "Exceptional ring by non-hermitian sonic crystals," Progress In Electromagnetics Research, Vol. 176, 1-10, 2023.
23. Ye, L. P., C. Y. Qiu, J. Lu, K. Tang, H. Jia, M. Ke, S. Peng, and Z. Y. Liu, "Making sound vortices by metasurfaces," AIP Adv., Vol. 6, No. 8, 085007, 2016.
doi:10.1063/1.4961062
24. Li, J., A. Diaz-Rubio, C. Shen, Z. Jia, S. Tretyakov, and S. A. Cummer, "Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces," Phys. Rev. Applied, Vol. 11, No. 2, 024016, 2019.
doi:10.1103/PhysRevApplied.11.024016
25. Jiang, X., D. A. Ta, and W. Q. Wang, "Modulation of orbital-angular-momentum symmetry of nondiffractive acoustic vortex beams and realization using a metasurface," Phys. Rev. Applied, Vol. 14, No. 3, 034014, 2020.
doi:10.1103/PhysRevApplied.14.034014
26. Zhang, H. K., W. X. Zhang, Y. H. Liao, X. M. Zhou, J. F. Li, G. K. Hu, and X. D. Zhang, "Creation of acoustic vortex knots," Nat. Commun., Vol. 11, No. 1, 3956, 2020.
doi:10.1038/s41467-020-17744-x
27. Fan, S. W., Y. F. Wang, L. Y. Cao, Y. F. Zhu, A. L. Chen, B. Vincent, B. Assouar, and Y. S. Wang, "Acoustic vortices with high-order orbital angular momentum by a continuously tunable metasurface," Appl. Phys. Lett., Vol. 116, No. 16, 163504, 2020.
doi:10.1063/5.0007351
28. Jimenez, N., J. P. Groby, and V. Romero-Garcia, "Spiral sound-diffusing metasurfaces based on holographic vortices," Sci. Rep., Vol. 11, No. 1, 1-13, 2021.
doi:10.1038/s41598-020-79139-8
29. Han, T. C., K. H. Wen, Z. X. Xie, and X. L. Yue, "An ultra-thin wideband reflection reduction metasurface based on polarization conversion," Progress In Electromagnetics Research, Vol. 173, 1-8, 2022.
doi:10.2528/PIER21121405
30. Long, Y., D. M. Zhang, C. W. Yang, J. M. Ge, H. Chen, and J. Ren, "Realization of acoustic spin transport in metasurface waveguides," Nat. Commun., Vol. 11, No. 1, 4716, 2020.
doi:10.1038/s41467-020-18599-y
31. Gong, K. M., X. Zhou, and J. L. Mo, "Continuously tuneable acoustic metasurface for high order transmitted acoustic vortices," Smart Mater. Struct., Vol. 31, No. 11, 115001, 2022.
doi:10.1088/1361-665X/ac9265
32. Hong, Z. Y., J. Zhang, and B. W. Drinkwater, "On the radiation force fields of fractional-order acoustic vortices," EPL, Vol. 110, No. 1, 14002, 2015.
doi:10.1209/0295-5075/110/14002
33. Jia, Y. R., Q. Wei, D. J. Wu, Z. Xu, and X. J. Liu, "Generation of fractional acoustic vortex with a discrete Archimedean spiral structure plate," Appl. Phys. Lett., Vol. 112, No. 17, 173501, 2018.
doi:10.1063/1.5026646
34. Ealo, J. L., J. C. Prieto, and F. Seco, "Airborne ultrasonic vortex generation using flexible ferroelectrets," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 58, No. 8, 1651-1657, 2011.
doi:10.1109/TUFFC.2011.1992
35. Wunenburger, R., J. I. V. Lozano, and E. Brasselet, "Acoustic orbital angular momentum transfer to matter by chiral scattering," New J. Phys., Vol. 17, No. 1, 103022, 2015.
doi:10.1088/1367-2630/17/10/103022
36. Jiang, X., J. J. Zhao, S. L. Liu, B. Liang, X. Y. Zou, J. Yang, C. W. Qiu, and J. C. Cheng, "Broadband and stable acoustic vortex emitter with multi-arm coiling slits," Appl. Phys. Lett., Vol. 108, No. 20, 203501, 2016.
doi:10.1063/1.4949337
37. Jimenez, N., V. Romero-Garcia, L. M. Garcia-Raffi, F. Camarena, and K. Staliunas, "Sharp acoustic vortex focusing by Fresnel-spiral zone plates," Appl. Phys. Lett., Vol. 112, No. 20, 204101, 2018.
doi:10.1063/1.5029424
38. Jiang, X., Y. Li, B. Liang, J. C. Cheng, and L. Zhang, "Convert acoustic resonances to orbital angular momentum," Phys. Rev. Lett., Vol. 117, No. 3, 034301, 2016.
doi:10.1103/PhysRevLett.117.034301
39. Guo, Z. Y., H. J. Liu, H. Zhou, K. Y. Zhou, S. M. Wang, F. Shen, Y. B. Gong, J. Gao, S. T. Liu, and K. Guo, "High-order acoustic vortex field generation based on a metasurface," Phys. Rev. E, Vol. 100, No. 5, 053315, 2019.
doi:10.1103/PhysRevE.100.053315
40. Chen, D. C., Q. X. Zhou, X. F. Zhu, Z. Xu, and D. J. Wu, "Focused acoustic vortex by an artificial structure with two sets of discrete Archimedean spiral slits," Appl. Phys. Lett., Vol. 115, No. 8, 083501, 2019.
doi:10.1063/1.5108687
41. Guo, S. F., X. Y. Guo, X. Wang, X. Du, P. Y. Wu, A. Bouakaz, and M. X. Wan, "Manipulation of nanodroplets via a nonuniform focused acoustic vortex," Phys. Rev. Applied, Vol. 13, No. 3, 034009, 2020.
doi:10.1103/PhysRevApplied.13.034009
42. Li, X. R., Y. R. Jia, Y. C. Luo, J. Yao, and D. J. Wu, "Mixed focused-acoustic-vortices generated by an artificial structure plate engraved with discrete rectangular holes," Appl. Phys. Lett., Vol. 118, No. 4, 043503, 2021.
doi:10.1063/5.0038892
43. Li, X. R., D. J. Wu, Y. C. Luo, J. Yao, and X. J. Liu, "Coupled focused acoustic vortices generated by degenerated artificial plates for acoustic coded communication," Adv. Mater. Technol., Vol. 7, No. 9, 2200102, 2022.
doi:10.1002/admt.202200102
44. Baudoin, M., J. C. Gerbedoen, A. Riaud, O. B. Matar, N. Smagin, and J. L. Thomas, "Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers," Sci. Adv., Vol. 5, No. 4, eaav1967, 2019.
doi:10.1126/sciadv.aav1967
45. Baudoin, M., J. L. Thomas, R. A. Sahely, J. C. Gerbedoen, Z. Gong, A. Sivery, O. B. Matar, N. Smagin, P. Favreau, and A. Vlandas, "Spatially selective manipulation of cells with single-beam acoustical tweezers," Nat. Commun,, Vol. 11, No. 1, 4244, 2020.
doi:10.1038/s41467-020-18000-y
46. Fu, Y. Y., C. Shen, X. H. Zhu, J. F. Li, Y. W. Liu, S. A. Cummer, and Y. D. Xu, "Sound vortex diffraction via topological charge in phase gradient metagratings," Sci. Adv., Vol. 6, No. 40, eaba9876, 2020.
doi:10.1126/sciadv.aba9876
47. Fu, Y. Y., Y. Tian, X. Li, S. L. Yang, Y. W. Liu, Y. D. Xu, and M. H. Lu, "Asymmetric generation of acoustic vortex using dual-layer metasurfaces," Phys. Rev. Lett., Vol. 128, No. 1, 104501, 2022.
doi:10.1103/PhysRevLett.128.104501
48. Qian, J., Y. Wang, J. P. Xia, Y. Ge, S. Q. Yuan, H. X. Sun, and X. J. Liu, "Broadband integrative acoustic asymmetric focusing lens based on mode-conversion meta-atoms," Appl. Phys. Lett., Vol. 116, No. 22, 223505, 2020.
doi:10.1063/5.0004579
49. Wang, Y., J. Qian, J. P. Xia, Y. Ge, S. Q. Yuan, H. X. Sun, and X. J. Liu, "Acoustic bessel vortex beam by quasi-three-dimensional reflected metasurfaces," Micromachines, Vol. 12, No. 11, 1388, 2021.
doi:10.3390/mi12111388