Vol. 111
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-06-20
A Miniaturized Frequency Selective Rasorber with High Frequency Harmonic Suppression
By
Progress In Electromagnetics Research Letters, Vol. 111, 35-43, 2023
Abstract
A frequency selective absorber for harmonic absorption (HA-FSR) is proposed in this paper. It consists of a miniaturized frequency selective surface (FSS) for harmonic suppression and a circuit analog absorber (CAA) for harmonic absorption. The frequency selective rasorber (FSR) unit is 6.7 mm × 6.7 mm (0.129λ × 0.129λ, where λ is the free space wavelength of 5.8 GHz). The simulation and measurement show that the HA-FSR can generate a transmission band from 4.51 GHz to 7.47 GHz and a -10 dB absorption band from 11.96 GHz to 22.31 GHz, which covers more than 3 times of the main passband harmonic band. In addition, the FSR has good polarization stability and angle stability within 30˚ of oblique incidences under both TE and TM polarizations, which can be applied to electromagnetic interference shielding field and low-observable platforms.
Citation
Lei Deng, Shixing Yu, and Na Kou, "A Miniaturized Frequency Selective Rasorber with High Frequency Harmonic Suppression," Progress In Electromagnetics Research Letters, Vol. 111, 35-43, 2023.
doi:10.2528/PIERL23042403
References

1. Hopkinson, F. and D. Rittenhouse, "An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse," Transactions of the American Philosophical Society, Vol. 2, 201-206, 1786.
doi:10.2307/1005186

2. Sampath, S. S. and R. Sivasamy, "A single-layer UWB frequency-selective surface with band-stop response," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 1, 276-279, Feb. 2020.
doi:10.1109/TEMC.2018.2886285

3. Littman, N. M., S. G. O'keefe, A. Galehdar, H. G. Espinosa, and D. V. Thiel, "Ultra-thin broadband transmission FSS for linear polarization rotation," IEEE Access, Vol. 9, 127335-127342, 2021.
doi:10.1109/ACCESS.2021.3106959

4. Yan, M., S. Qu, J. Wang, et al. "A miniaturized dual-band FSS with second-order response and large band separation," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1602-1605, 2015.
doi:10.1109/LAWP.2015.2413942

5. Suresh Kumar, T. R. and K. J. Vinoy, "Tri-band band-stop frequency selective surface using tortuous Jerusalem cross with angularly stable response," IEEE Indian Conference on Antennas and Propogation, 1-4, 2018.

6. Xu, S., Y. Li, M. Ahmed, et al. "A novel miniaturized ultra-wideband frequency selective surface with rapid band edge," IEEE Access, Vol. 9, 161854-161861, 2021.
doi:10.1109/ACCESS.2021.3131629

7. Hong, T., M. Wang, K. Peng, Q. Zhao, and S. Gong, "Compact ultra-wide band frequency selective surface with high selectivity," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5724-5729, Jul. 2020.
doi:10.1109/TAP.2020.2963905

8. Yu, Z. Y., W. C. Tang, Y. H. Li, and J. P. Zhu, "Highly-selective, closely-spaced, tri-band bandpass three-dimensional frequency selective surface," IEICE Electronics Express, Vol. 17, No. 13, 20200153, 2020.
doi:10.1587/elex.17.20200153

9. Yu, W., G. Q. Luo, Y. Yu, et al. "Dual-polarized band-absorptive frequency selective rasorber using meander-line and lumped resistors," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1318-1322, Feb. 2019.
doi:10.1109/TAP.2018.2883643

10. Guo, M., Q. Chen, D. Sang, Y. Zheng, and Y. Fu, "Dual-polarized dual-band frequency selective rasorber with low insertion loss," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 148-152, Jan. 2020.
doi:10.1109/LAWP.2019.2956230

11. Omar, A. A., Z. Shen, and H. Huang, "Absorptive frequency-selective reflection and transmission structures," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6173-6178, Nov. 2017.
doi:10.1109/TAP.2017.2754463

12. Shen, Z., J. Wang, and B. Li, "3-D frequency selective rasorber: Concept, analysis, and design," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 10, 3087-3096, Oct. 2016.
doi:10.1109/TMTT.2016.2604385

13. Wang, Z. F., J. H. Fu, Q. S. Zeng, M. X. Song, and T. A. Denidni, "Wide-band transmissive frequency-selective absorber," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1443-1447, 2019.
doi:10.1109/LAWP.2019.2919633

14. Yu, S., N. Kou, Z. Ding, and Z. Zhang, "Harmonic-suppressed frequency selective rasorber using resistive-film sheet and square-loops resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 2, 292-296, Feb. 2020.
doi:10.1109/LAWP.2019.2960288

15. Yu, S., N. Kou, Z. Ding, and Z. Zhang, "Harmonic-absorption frequency selective rasorber based on non-resonant FSS and resistive-sheet," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 8, 3737-3745, Aug. 2021.
doi:10.1109/TMTT.2021.3085680

16. Omar, A. A., Z. Shen, and H. Huang, "Absorptive frequency-selective reflection and transmission structures," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6173-6178, Nov. 2017.
doi:10.1109/TAP.2017.2754463

17. Hamid, S., H. Shakhtour, and D. Heberling, "Frequency selective radome with enhanced transmissive and absorptive response," Proc. Loughborough Antennas Propag. Conf. (LAPC), 36-39, Nov. 2014.