1. Roy, S. and K. Debnath, "Electromechanically tunable graphene-based terahertz metasurface," Optics Communications, Vol. 534, 129319, 2023.
doi:10.1016/j.optcom.2023.129319
2. Cornejo, H. S., L. De Los Santos Valladares, V. S. Kamboj, A. Bustamante Dominguez, J. C. González, A. M. Osorio Anaya, N. O. Moreno, et al. "Texture and terahertz analysis of YBa2Cu3O7 grown onto LaAlO3 by the chemical solution deposition," Heat Treatment, Vol. 3, No. 1, 1-8, 2022.
3. Shur, M. S., "Terahertz plasmonic technology," IEEE Sensors Journal, Vol. 21, No. 11, 12752-12763, 2020.
doi:10.1109/JSEN.2020.3022809
4. Latha, A. M., S. Unnikrishnakurup, A. Jain, M. K. Pathra, and K. Balasubramaniam, "Material characterization and thickness measurement of iron particle reinforced polyurethane multi-layer coating for aircraft stealth applications using THz --- Time domain spectroscopy," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 43, No. 7-8, 582-597, 2022.
doi:10.1007/s10762-022-00874-2
5. Patel, S. K., J. Surve, and J. Parmar, "Detection of cancer with graphene metasurface-based highly efficient sensors," Diamond and Related Materials, Vol. 129, 109367, 2022.
doi:10.1016/j.diamond.2022.109367
6. Strag, M. and W. Swiderski, "Defect detection in aramid fiber-reinforced composites via terahertz radiation," Journal of Nondestructive Evaluation, Vol. 42, No. 1, 2023.
doi:10.1007/s10921-022-00917-7
7. Ergün, S. and S. Sönmez, "Terahertz technology for military applications," Journal of Management and Information Science, Vol. 3, No. 1, 13-16, 2015.
8. Xu, C., Z. Ren, J. Wei, and C. Lee, "Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications," Iscience, Vol. 25, No. 2, 103799, 2022.
doi:10.1016/j.isci.2022.103799
9. Sabah, C., B. Mulla, H. Altan, and L. Ozyuzer, "Cross-like terahertz metamaterial absorber for sensing applications," Pramana, Vol. 91, 1-7, 2018.
doi:10.1007/s12043-018-1591-4
10. Zhou, S., K. Bi, Q. Li, L. Mei, Y. Niu, W. Fu, S. Han, et al. "Patterned graphene-based metamaterials for terahertz wave absorption," Coatings, Vol. 13, No. 1, 59, 2023.
doi:10.3390/coatings13010059
11. Li, J., Y. Liu, Y. Chen, W. Chen, H. Guo, Q. Wu, and M. Li, "Tunable broadband-narrowband and dual-broadband terahertz absorber based on a hybrid metamaterial vanadium dioxide and graphene," Micromachines, Vol. 14, No. 1, 201, 2023.
doi:10.3390/mi14010201
12. Zhang, Z., Q. Sun, Y. Fan, Z. Zhu, J. Zhang, X. Yuan, and C. Guo, "Low-threshold and high-extinction-ratio optical bistability within a graphene-based perfect absorber," Nanomaterials, Vol. 13, No. 3, 389, 2023.
doi:10.3390/nano13030389
13. Upender, P. and A. Kumar, "THz dielectric metamaterial sensor with high Q for biosensing applications," IEEE Sensors Journal, 2023.
14. Beheshti Asl, A., D. Pourkhalil, A. Rostami, and H. Mirtaghioglu, "A perfect electrically tunable graphene-based metamaterial absorber," Journal of Computational Electronics, Vol. 20, 864-872, 2021.
doi:10.1007/s10825-021-01664-0
15. Yi, Z., J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, "Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region," Micromachines, Vol. 10, No. 3, 194, 2019.
doi:10.3390/mi10030194
16. Ashvanth, B., B. Partibane, and G. Idayachandran, "Designing miniaturized metamaterial absorber with tunable multiband characteristics for THz applications," Bulletin of Materials Science, Vol. 44, 1-8, 2021.
17. Xu, K.-D., Y. Cai, X. Cao, Y. Guo, Y. Zhang, and Q. Chen, "Multiband terahertz absorbers using T-shaped slot-patterned graphene and its complementary structure," JOSA B, Vol. 37, No. 10, 3034-3040, 2020.
doi:10.1364/JOSAB.404062
18. Jain, P., K. Prakash, G. M. Khanal, N. Sardana, S. Kumar, N. Gupta, and A. K. Singh, "Quad-band polarization sensitive terahertz metamaterial absorber using Gemini-shaped structure," Results in Optics, Vol. 8, 100254, 2022.
doi:10.1016/j.rio.2022.100254
19. Wang, J., T. Lang, Z. Hong, M. Xiao, and J. Yu, "Design and fabrication of a triple-band terahertz metamaterial absorber," Nanomaterials, Vol. 11, No. 5, 1110, 2021.
doi:10.3390/nano11051110
20. Abdulkarim, Y. I., M. Xiao, H. N. Awl, F. F. Muhammadsharif, T. Lang, S. R. Saeed, F. Alkurt, M. Bakir, M. Karaaslan, and J. Dong, "Simulation and lithographic fabrication of a triple band terahertz metamaterial absorber coated on flexible polyethylene terephthalate substrate," Optical Materials Express, Vol. 12, No. 1, 338-359, 2022.
doi:10.1364/OME.447855
21. Li, H. and J. Yu, "Active dual-tunable broadband absorber based on a hybrid graphene-vanadium dioxide metamaterial," OSA Continuum, Vol. 3, No. 7, 2143-2155, Aug. 15, 2020.
22. Nickpay, M. R., M. Danaie, and A. Shahzadi, "A wideband and polarization-insensitive graphene-based metamaterial absorber," Superlattices and Microstructures, Vol. 150, 106786, Feb. 1, 2021.
23. Zhuang, S., X. Li, T. Yang, L. Sun, O. Kosareva, C. Gong, and W. Liu, "Graphene-based absorption --- Transmission multi-functional tunable THz metamaterials," Micromachines, Vol. 13, No. 7, 1239, Aug. 1, 2022.