Vol. 117
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-05-31
Dual-Band Metasurface Antenna Based on Characteristic Mode Analysis
By
Progress In Electromagnetics Research M, Vol. 117, 71-81, 2023
Abstract
A dual-band metasurface antenna is designed consisting of three-layer metal patches and two-layer dielectric substrates. To facilitate the modal analysis of the metasurface, Characteristic Mode Analysis (CMA) is used to analyze the metasurface antenna with 4×4 rectangular patches, and the performance of the antenna is optimized based on the Modal Significance (MS) curves. In order to excite the current of different characteristic modes at certain frequencies, the symmetric resonant arms and cross-shaped impedance matching converters are used in the feeding structure. The measured results are consistent with the simulated values, and the designed antenna can yield the gains of 7.67 dBi at 3.5 GHz and 7.28 dBi at 4.9 GHz, which provides the potential applications in 5G and other wireless communications.
Citation
Huawei Zhuang, Honghao Tan, Changyong Liu, Fei Li, Wei Ding, Changbin Tian, and Fanmin Kong, "Dual-Band Metasurface Antenna Based on Characteristic Mode Analysis," Progress In Electromagnetics Research M, Vol. 117, 71-81, 2023.
doi:10.2528/PIERM23041403
References

1. Lu, X. Y., C. R. Chappidi, X. Wu, and K. Sengupta, "Antenna preprocessing and element-pattern shaping for multi-band mmwave arrays: Multi-port receivers and antennas," IEEE Journal of Solid-state Circuits, Vol. 55, No. 6, 1455-1470, 2020.

2. Zhang, J. Y., E. Bjornson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, "Prospective multiple antenna technologies for beyond 5G," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 8, 1637-1660, 2020.
doi:10.1109/JSAC.2020.3000826

3. Ban, Y. L., C. Li, C. Y. D. Sim, G. Wu, and K. L. Wong, "4G/5G multiple antennas for future multi-mode smartphone applications," IEEE Access, No. 4, 2981-2988, 2016.
doi:10.1109/ACCESS.2016.2582786

4. Abdelghani, A. M., N. F. F. Areed, M. F. O. Hameed, M. A. H. Hindy, and S. S. A. Obayya, "Design of UWB antenna using reconfigurable optical router," Optical and Quantum Electronics, Vol. 47, No. 8, 2675-2688, 2015.
doi:10.1007/s11082-015-0151-0

5. Anguera, J., A. Andujar, S. Benavente, J. Jayasinghe, and S. Kahng, "High-directivity microstrip antenna with Mandelbrot fractal boundary," IET Microwaves Antennas & Propagation, Vol. 12, No. 4, 569-575, 2018.
doi:10.1049/iet-map.2017.0649

6. Wang, S. Q., F. M. Kong, K. Li, and L. G. Du, "A planar triple-band monopole antenna loaded with an arc-shaped defected ground plane for WLAN/WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 13, No. 4, 381-389, 2021.
doi:10.1017/S1759078720001099

7. Dwivedi, A. K., A. Sharma, A. K. Pandey, and V. Singh, "Two port circularly polarized MIMO antenna design and investigation for 5G communication systems," Wireless Personal Communications, Vol. 120, No. 3, 2085-2099, 2021.
doi:10.1007/s11277-021-08461-9

8. Das, G., A. Sharma, and R. K. Gangwar, "Dielectric resonator-based two-element MIMO antenna system with dual band characteristics," IET Microwaves Antennas & Propagation, Vol. 12, No. 5, 734-741, 2018.
doi:10.1049/iet-map.2017.0744

9. Bharti, G., D. Kumar, A. K. Gautam, and A. Sharma, "Two-port ring-shaped dielectric resonator-based diversity radiator with dual-band and dual-polarized features," Microwave and Optical Technology Letters, Vol. 62, No. 2, 581-588, 2020.
doi:10.1002/mop.32053

10. Saxena, S., B. K. Kanaujia, S. Dwari, S. Kumar, and R. Tiwari, "MIMO antenna with built-in circular shaped isolator for sub-6 GHz 5G applications," Electronics Letters, Vol. 54, No. 8, 478-479, 2018.
doi:10.1049/el.2017.4514

11. Kumari, T., G. Das, A. Sharma, and R. K. Gangwar, "Design approach for dual element hybrid MIMO antenna arrangement for wideband applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, 1-10, 2019.
doi:10.1002/mmce.21486

12. Parchin, N. O., Y. I. A. Al-Yasir, A. H. Ali, I. Elfergani, J. M. Noras, R. A. Abd-AlhameedJ. Rodriguez, and , "Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications," IEEE Access, Vol. 7, 15612-15622, 2019.
doi:10.1109/ACCESS.2019.2893112

13. Li, H. P., G. M. Wang, X. J. Gao, J. G. Liang, and H. S. Hou, "An X/Ku-band focusing anisotropic metasurface for low cross-polarization lens antenna application," Progress In Electromagnetics Research, Vol. 159, 79-91, 2017.
doi:10.2528/PIER17032807

14. Minatti, G., E. Martini, and D. Maci, "Efficiency of metasurface antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1532-1541, 2017.
doi:10.1109/TAP.2017.2669728

15. Lin, F. H. and Z. N. Chen, "A method of suppressing higher order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1894-1902, 2018.
doi:10.1109/TAP.2018.2806401

16. Liu, S. H., D. Q. Yang, Y. P. Chen, K. Sun, X. K. Zhang, and Y. Xiang, "Design of single-layer broadband omnidirectional metasurface antenna under single mode resonance," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6947-6952, 2021.
doi:10.1109/TAP.2021.3076262

17. Li, H. P., G. M. Wang, J. G. Liang, and X. J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.
doi:10.2528/PIER16012011

18. Li, T. and Z. N. Chen, "Metasurface-based shared-aperture 5G S-/K-band antenna using characteristic modes analysis," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 6742-6750, 2018.
doi:10.1109/TAP.2018.2869220

19. Liu, S. H., D. Q. Yang, and J. Pan, "A low-profile broadband dual-circularly-polarized metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1395-1399, 2019.
doi:10.1109/LAWP.2019.2917758

20. Yan, X., Y. Liu, and S. X. Gong, "Design of a wideband omnidirectional antenna with characteristic mode analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 993-997, 2018.
doi:10.1109/LAWP.2018.2833962

21. Li, T. and Z. N. Chen, "A dual-band metasurface antenna using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5620-5624, 2018.
doi:10.1109/TAP.2018.2860121

22. Gao, X., G. W. Tian, Z. Y. Shou, and S. M. Li, "A low-profile broadband circularly polarized patch antenna based on characteristic mode analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 2, 214-218, 2021.
doi:10.1109/LAWP.2020.3044320

23. Lin, F. H. and Z. N. Chen, "Low-profile wideband metasurface antennas using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1706-1713, 2017.
doi:10.1109/TAP.2017.2671036

24. Gao, G. P., R. F. Zhang, W. F. Geng, H. J. Meng, and B. Hu, "Characteristic mode analysis of a nonuniform metasurface antenna for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 8, 1355-1359, 2020.
doi:10.1109/LAWP.2020.3001049

25. Wang, K., W. Shao, X. Ding, B. Z. Wang, and B. J. Jiang, "Design of high-gain metasurface antenna based on characteristic mode analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 661-665, 2022.
doi:10.1109/LAWP.2022.3140326

26. Liu, C., L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, "Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene," Adv. Opt. Mater., Vol. 6, 1800836, 2018.
doi:10.1002/adom.201800836

27. Xu, H., C. Guo, J. Zhang, W. Guo, W. Hu, L. Wang, G. Chen, X. Chen, and W. Lu, "PtTe2-based Type-II dirac semimetal and its van der Waals heterostructure for sensitive room temperature terahertz photodetection," Small, Vol. 15, 1903362, 2019.
doi:10.1002/smll.201903362