Vol. 111
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-06-15
Detection of Water Content in Honey by Electromagnetics Characterization Measurements
By
Progress In Electromagnetics Research Letters, Vol. 111, 1-7, 2023
Abstract
The quality of a honey can be affected by adulteration through the addition of often unauthorized substances such as sugar syrups or water. The water content in honeys is restricted to 20% according to CODEX ALIMENTARIUS. This research proposes a method which will allow to detect the water content in the honey directly in the jar. The method uses electromagnetic probing with several antennas around the jar. This method is based on the knowledge of the dielectric contrast between a pure honey and a honey containing different water contents. To validate this contrast, a campaign of dielectric measurements has been investigated on two different commercial honeys (H1 and H2) with arbitrary and controlled added water. The added water content in the honey has been varied from 0% to 15%. The experimental setup uses a coaxial transmission line with a sample holder. The frequency range extends from 100 MHz to 5000 MHz. The mixtures of honeys with water have been measured at an ambient temperature (25˚C).
Citation
Floriane Sparma, Sarah Sennoun, and Pierre Sabouroux, "Detection of Water Content in Honey by Electromagnetics Characterization Measurements," Progress In Electromagnetics Research Letters, Vol. 111, 1-7, 2023.
doi:10.2528/PIERL23041205
References

1. Codex Alimentarius Commission, Revised Codex Standard for Honey, , Codex Standard 12-1981, Rev. 1, 1987; Rev. 2, 2001.
doi:10.1016/j.jfoodeng.2020.110373

2. Li, Z., Z. Meng, A. Haigh, P. Wang, and A. Gibson, "Characterisation of water in honey using a microwave cylindrical cavity resonator sensor," Journal of Food Engineering, Vol. 292, 110373, 2021.

3. Bakar, A. A., M. A. N. B. Rodzali, R. Radzali, et al. "Dielectric properties assessment of honey by using non destructive dielectric spectroscopy," International Journal of Electrical and Computer Engineering, Vol. 12, No. 1, 189-200, February 2022, ISSN: 2088-8708.

4. Yakubu, A., Z. Abbas, and A. Muhammed, "Determination of adulteration of honey syrup using open ended coaxial probe sensor at microwave frequency," Open Access Library Journal, Vol. 6, e5448, 2019.
doi:10.1016/j.jfoodeng.2017.07.009

5. Li, Z., A. Haigh, C. Soutis, A. Gibson, and R. Sloan, "Evaluation of water content in honey using microwave transmission line technique," Journal of Food Engineering, Vol. 215, 113-125, December 2017.
doi:10.1002/mop.25570

6. Ba, D. and P. Sabouroux, "EpsiMu, a toolkit for permittivity and permeability measurement in microwave domain at real time of all materials: Applications to solid and semisolid materials," Microwave and Optical Technology Letters, Vol. 52, No. 12, December 2010.
doi:10.1016/j.crhy.2014.02.003

7. Georget, E., R. Abdeddaim, and P. Sabouroux, "A Quasi universal method to measure the electromagnetic characteristics of usual materials in microwave range," C. R. Physique, Vol. 15, 448-457, 2014.

8. Jarvis, J. B., M. D. Janezic, et al. "Measuring the permittivity and permeability of lossy materials: Solids, liquids, metals, building materials, and negative-index material," NIST Technical Note 1536, 2005.

9. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. on Instrumentation and Measurement, Vol. 19, No. 4, Nov. 1970.
doi:10.1109/22.552032

10. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, January 1997.

11. Jarvis, J. B., E. J Vanzura, and W. A Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 8, August 1990.

12. Jarvis, J. B., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, Jr., "Transmission/Reflection and short-circuit line methods for measuring permittivity and permeability," NIST Technical Note 1355-R, 1993.

13. Park, H. H., "Design of compact transition from conical to coaxial transmission lines with a low return loss," International Journal of Electronics, DOI: 10.1080/00207217.2020.1870739.
doi:10.1088/0957-0233/17/8/026

14. Adous, M., P. Queffelec, and L. Laguerre, "Coaxial/Cylindrical transition line for broadband permittivity measurement of civil engineering materials," Meas. Sci Technol., Vol. 17, 2241-2246, Institute of Physics Publishing, 2006.
doi:10.1109/36.103291

15. Chew, W. C., K. J. Olp, and G. P. Otto, "Design and calibration of a large broadband dielectricmeasurement cell," IEEE Transactions on Geoscience and Remote Sensing, Vol. 29, No. 1, January 1991.

16. Bohleber, P., N. Wagner, and O. Eisen, "Permittivity of ice at radio frequencies: Part I. Coaxial transmission line cell," Cold Regions Science and Technology, Vol. 82, 56-67, October 2012.
doi:10.2528/PIERL22021104

17. Sparma, F., B. Tallawi, E. Georgin, and P. Sabouroux, "Multi-probe sensor for water content diagnosis of liquid biofuels," Progress In Electromagnetics Research Letters, Vol. 106, 1-6, 2022.