Vol. 118
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-07-29
A Novel Frequency Selective Surface Loaded MIMO Antenna with Low Mutual Coupling and Enhanced Gain
By
Progress In Electromagnetics Research M, Vol. 118, 83-92, 2023
Abstract
This study focuses on the utilization of a slotted patch MIMO antenna to enhance isolation and gain. The MIMO antenna configuration includes two radiators integrated with an array of Frequency Selective Surfaces (FSSs). These antenna components are implemented on an FR-4 substrate and encompassed by FSS units that are optimized for X-band frequencies. The proposed MIMO antenna possesses dimensions of 65 mm (width) × 45 mm (length) × 1.6 mm (height). The primary objective of incorporating FSSs is to not only enhance isolation but also achieve high gain. The proposed FSS design features a circular ring structure with a rectangular loop at its center. The FSS unit cells exhibit excellent stability across various polarization incidence angles and operate within the frequency range of 7 to 9 GHz. The FSS loaded antenna offers a bandwidth ranging from 8.0 to 8.55 GHz, with a peak gain of 6.5 dB and isolation exceeding -20 dB among the MIMO elements. Furthermore, the study explores the MIMO antenna's performance in terms of diversity gain (DG), efficiency, and Envelope Correlation Coefficient (ECC), demonstrating superior results compared to existing state-of-the-art approaches. The proposed findings are validated by fabricating a sample prototype and conducting a comprehensive comparison between simulated and measured results.
Citation
Habib Ullah, Qunsheng Cao, Ijaz Khan, Saeed Ur Rahman, and Adamu Halilu Jabire, "A Novel Frequency Selective Surface Loaded MIMO Antenna with Low Mutual Coupling and Enhanced Gain," Progress In Electromagnetics Research M, Vol. 118, 83-92, 2023.
doi:10.2528/PIERM23040607
References

1. Hussain, M., W. A. Awan, E. M. Ali, M. S. Alzaidi, M. Alsharef, D. H. Elkamchouchi, A. Alzahrani, and M. Fathy Abo Sree, "Isolation improvement of parasitic element-loaded dual-band MIMO antenna for mm-wave applications," Micromachines, Vol. 13, 1918, 2022.
doi:10.3390/mi13111918

2. Bayarzaya, B., N. Hussain, W. A. Awan, M. A. Sufian, A. Abbas, D. Choi, J. Lee, and N. Kim, "A compact MIMO antenna with improved isolation for ISM, sub-6 GHz, and WLAN application," Micromachines, Vol. 13, 1355, 2022.
doi:10.3390/mi13081355

3. Rahman, S. U., Q. Cao, F. Amin, et al. "Multifunctional polarization converting metasurface and its application to reduce the radar cross-section of an isolated MIMO antenna," Journal of Physics D: Applied Physics, Vol. 53, No. 30, 305001, 2020.
doi:10.1088/1361-6463/ab85e7

4. Khan, M. I., M. I. Khattak, S. U. Rahman, A. B. Qazi, A. A. Telba, and A. Sebak, "Design and investigation of modern UWB-MIMO antenna with optimized isolation," Micromachines, Vol. 11, No. 4, 432, 2020.
doi:10.3390/mi11040432

5. Ahmad, A., A. Ullah, C. Feng, M. Khan, S. Ashraf, M. Adnan, S. Nazir, and H. U. Khan, "Towards an improved energy efficient and end-to-end secure protocol for iot healthcare applications," Security and Communication Networks, Vol. 2020, 1-10, 2020.
doi:10.1016/S1353-4858(20)30035-0

6. Hussain, N., W. A. Awan, W. Ali, S. I. Naqvi, A. Zaidi, and T. T. Le, "Compact wideband patch antenna and its MIMO con guration for 28 GHz applications," AEU Int. J. Electron. Commun., Vol. 132, 153612, 2021.
doi:10.1016/j.aeue.2021.153612

7. Ibrahim, A. A., M. A. Abdalla, A. B. Abdel-Rahman, and H. F. Hamed, "Compact MIMO antenna with optimized mutual coupling reduction using DGS," Int. J. Microw. Wirel. Technol., Vol. 6, 173-180, 2014.
doi:10.1017/S1759078713001013

8. Sabaawi, A. M. A., K. S. Muttair, O. A. Al-Ani, and Q. H. Sultan, "Dual-band MIMO antenna with defected ground structure for sub-6 GHz 5G applications," Progress In Electromagnetics Research C, Vol. 122, 57-66, 2022.
doi:10.2528/PIERC22050703

9. Gong, Y.-Y., L. Wang, and Z. Zhang, "The novel Y shaped fractal defected ground structure for the mutual coupling reduction," Progress In Electromagnetics Research M, Vol. 72, 13-21, 2018.
doi:10.2528/PIERM18062301

10. Yang, Y., Q. Chu, and C. Mao, "Multiband MIMO antenna for GSM, DCS, and LTE indoor applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1573-1576, 2016.
doi:10.1109/LAWP.2016.2517188

11. Sun, Y., M. Tian, and G. S. Cheng, "Characteristic mode-based neutralization line design for MIMO antenna," International Journal of Antennas and Propagation, Jul. 30, 2022.

12. Ou Yang, J., F. Yang, and Z.Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 310-313, 2011.
doi:10.1109/LAWP.2011.2140310

13. Hussain, M., Q. Abbas, S. H. H. Gardzi, M. Alibakhshikenari, F. Falcone, and E. Limiti, "Ultra-wideband MIMO antenna realization for indoor Ka-band applications," 2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 108-109, 2022.
doi:10.23919/USNC-URSINRSM57467.2022.9881413

14. Saravanan, M., V. B. Geo, and S. M. Umarani, "Gain enhancement of patch antenna integrated with metamaterial inspired superstrate," J. Electr. Sys. Info. Technol., Vol. 5, 263-270, 2018.

15. Samantaray, D. and S. Bhattacharyya, "A gain-enhanced slotted patch antenna using metasurface as superstrate configuration," IEEE Trans. Antennas Propag., Vol. 68, 6548-6556, 2020.
doi:10.1109/TAP.2020.2990280

16. Arnmanee, P. and C. Phongcharoenpanich, "Improved microstrip antenna with HIS elements and FSS superstrate for 2.4 GHz band applications," Int. J. Antennas Propag., Vol. 2018, 1-11, 2018.
doi:10.1155/2018/9145373

17. Kushwaha, N., R. Kumar, and T. Oli, "Design of a high-gain ultra-wideband slot antenna using frequency selective surface," Microwave Opt. Technol. Lett., Vol. 56, 1498-1502, 2014.
doi:10.1002/mop.28324

18. Yuan, Y., X. Xi, and Y. Zhao, "Compact UWB FSS reflector for antenna gain enhancement," IET Microwaves Antennas Propag., Vol. 13, 1749-1755, 2019.
doi:10.1049/iet-map.2019.0083

19. Hsing-Yi, C. and Y. Tao, "Bandwidth enhancement of a U-slot patch antenna using dual-band frequency-selective surface with double rectangular ring elements," Microwave Opt. Technol. Lett., Vol. 53, 1547-1553, 2011.

20. Adelson, M. L., O. N. Henrique, H. O. C. Nilson, and J. P. da-Silva, "Effect of metamaterial cells array on a microstrip patch antenna design," J. Microwaves Optoelectron. Electromag. Appl., Vol. 19, 327-342, 2020.

21. Adibi, S., M. A. Honarvar, and A. Lalbakhsh, "Gain enhancement of wideband circularly polarized UWB antenna using FSS," Radio Sci., Vol. 56, e2020RS007098, 2021.

22. Afzal, M. U., A. Lalbakhsh, and K. P. Esselle, "Electromagnetic-wave beam-scanning antenna using near-field rotatable graded-dielectric plates," J. App. Phy., Vol. 124, 234901-234911, 2018.
doi:10.1063/1.5049204

23. Mackay, A., B. Sanz-Izquierdo, and E. A. Parker, "Evolution of frequency selective surfaces," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 2, 1-7, 2014.

24. Nair, R. U. and R. M. Jha, "Electromagnetic design and performance analysis of airborne radomes: Trends and perspectives antenna applications corner," Anten. Propag. Mag., Vol. 56, 276-298, 2014.
doi:10.1109/MAP.2014.6931715

25. Luukkonen, O., F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Trans. Antennas Propag., Vol. 57, 3119-3125, 2009.
doi:10.1109/TAP.2009.2028601

26. Zahirjoozdani, M., M. Khalajamirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electron. Lett., Vol. 52, 767-768, 2016.
doi:10.1049/el.2016.0336

27. Hiranandani, M. A., A. B. Yakovlev, and A. A. Kishk, "Artificial magnetic conductors realized by frequency-selective surfaces on a grounded dielectric slab for antenna applications," IEEE Proc. Microw. Antennas Propag., Vol. 153, 487-493, 2006.
doi:10.1049/ip-map:20050156

28. Mark, R., N. Rajak, K. Mandal, and S. Das, "Isolation and gain enhancement using metamaterial-based super-strate for MIMO applications," Radioengineering, Vol. 28, No. 4, 689-695, 2019.
doi:10.13164/re.2019.0689

29. Peng, H., R. Zhi, Q. Yang, J. Cai, Y. Wan, and G. Liu, "Design of a MIMO antenna with high gain and enhanced isolation for WLAN applications," Electron., Vol. 10, No. 14, 1659, 2021.
doi:10.3390/electronics10141659

30. Jiang, H., L. M. Si, W. Hu, and X. Lv, "A symmetrical dual-beam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications," IEEE Photonics J., Vol. 11, No. 1, 1-9, 2019.

31. Lin, M., P. Liu, and Z. Guo, "Gain-enhanced Ka-band MIMO antennas based on the SIW corrugated technique," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3084-3087, 2017.
doi:10.1109/LAWP.2017.2761903

32. Nguyen, N. L., "Gain enhancement for MIMO antenna using metamaterial structure," Int. J. Microw. Wirel. Technolo., Vol. 11, No. 8, 851-862, 2019.
doi:10.1017/S175907871900059X

33. Khajeh-Khalili, F., M. A. Honarvar, M. Naser-Moghadasi, and M. Dolatshahi, "Gain enhancement and mutual coupling reduction of multiple-intput multiple-output antenna for millimeter-wave applications using two types of novel metamaterial structures," Int. J. RF Microw. Comp. Aided Eng., Vol. 30, No. 1, e22006, 2020.

34. Firmansyah, T., H. Herudin, S. Suhendar, R. Wiryadinata, M. I. Santoso, Y. R. Denny, and T. Supriyanto, "Bandwidth and gain enhancement of MIMO antenna by using ring and circular parasitic with air-gap microstrip structure," TELKOMNIKA, Vol. 15, No. 3, 1155-1163, 2017.
doi:10.12928/telkomnika.v15i3.6377

35. Niu, Z., H. Zhang, Q. Chen, and T. Zhong, "Isolation enhancement in closely coupled dual-band MIMO patches antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 8, 1686-1690, 2019.
doi:10.1109/LAWP.2019.2928230

36. Mohanty, A., B. R. Behera, and N. Nasimuddin, "Hybrid metasurface loaded tri-port compact antenna with gain enhancement and pattern diversity," Int. J. RF Microw. Comp. Aided Eng., Vol. 31, No. 11, e22795, 2021.

37. Ullah, H., S. U. Rahman, Q. Cao, I. Khan, and H. Ullah, "Design of SWB MIMO antenna with extremely wide-band isolation," Electron., Vol. 9, No. 1, 194, 2020.
doi:10.3390/electronics9010194

38. Jabire, A. H., H. X. Zheng, A. Abdu, and Z. Song, "Characteristic mode analysis and design of wide band MIMO antenna consisting of metamaterial unit cell," Electron., Vol. 8, No. 1, 68, 2019.
doi:10.3390/electronics8010068

39. Khan, I., K. Zhang, Q. Wu, I. Ullah, L. Ali, H. Ullah, and S. U. Rahman, "A wideband high-isolation microstrip MIMO circularly-polarized antenna based on parasitic elements," Materials, Vol. 16, No. 1, 103, Jan. 2023.
doi:10.3390/ma16010103

40. Rahman, S. U., H. Deng, M. Sajjad, A. Rauf, Z. Shafiq, M. Ahmad, and S. Iqbal, "Angularly stable frequency selective surface for the gain enhancement of isolated multiple input multiple output antenna," Microwave Opt. Technol. Lett., Vol. 63, No. 11, 2803-2810, Nov. 2021.
doi:10.1002/mop.32980

41. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

42. Khan, I., Q. Wu, I. Ullah, S. U. Rahman, H. Ullah, and K. Zhang, "Designed circularly polarized two-port microstrip MIMO antenna for WLAN applications," Applied Sciences, Vol. 12, No. 3, 1068, Jan. 20, 2022.
doi:10.3390/app12031068