1. Hussain, M., W. A. Awan, E. M. Ali, M. S. Alzaidi, M. Alsharef, D. H. Elkamchouchi, A. Alzahrani, and M. Fathy Abo Sree, "Isolation improvement of parasitic element-loaded dual-band MIMO antenna for mm-wave applications," Micromachines, Vol. 13, 1918, 2022.
doi:10.3390/mi13111918
2. Bayarzaya, B., N. Hussain, W. A. Awan, M. A. Sufian, A. Abbas, D. Choi, J. Lee, and N. Kim, "A compact MIMO antenna with improved isolation for ISM, sub-6 GHz, and WLAN application," Micromachines, Vol. 13, 1355, 2022.
doi:10.3390/mi13081355
3. Rahman, S. U., Q. Cao, F. Amin, et al. "Multifunctional polarization converting metasurface and its application to reduce the radar cross-section of an isolated MIMO antenna," Journal of Physics D: Applied Physics, Vol. 53, No. 30, 305001, 2020.
doi:10.1088/1361-6463/ab85e7
4. Khan, M. I., M. I. Khattak, S. U. Rahman, A. B. Qazi, A. A. Telba, and A. Sebak, "Design and investigation of modern UWB-MIMO antenna with optimized isolation," Micromachines, Vol. 11, No. 4, 432, 2020.
doi:10.3390/mi11040432
5. Ahmad, A., A. Ullah, C. Feng, M. Khan, S. Ashraf, M. Adnan, S. Nazir, and H. U. Khan, "Towards an improved energy efficient and end-to-end secure protocol for iot healthcare applications," Security and Communication Networks, Vol. 2020, 1-10, 2020.
doi:10.1016/S1353-4858(20)30035-0
6. Hussain, N., W. A. Awan, W. Ali, S. I. Naqvi, A. Zaidi, and T. T. Le, "Compact wideband patch antenna and its MIMO conguration for 28 GHz applications," AEU Int. J. Electron. Commun., Vol. 132, 153612, 2021.
doi:10.1016/j.aeue.2021.153612
7. Ibrahim, A. A., M. A. Abdalla, A. B. Abdel-Rahman, and H. F. Hamed, "Compact MIMO antenna with optimized mutual coupling reduction using DGS," Int. J. Microw. Wirel. Technol., Vol. 6, 173-180, 2014.
doi:10.1017/S1759078713001013
8. Sabaawi, A. M. A., K. S. Muttair, O. A. Al-Ani, and Q. H. Sultan, "Dual-band MIMO antenna with defected ground structure for sub-6 GHz 5G applications," Progress In Electromagnetics Research C, Vol. 122, 57-66, 2022.
doi:10.2528/PIERC22050703
9. Gong, Y.-Y., L. Wang, and Z. Zhang, "The novel Y shaped fractal defected ground structure for the mutual coupling reduction," Progress In Electromagnetics Research M, Vol. 72, 13-21, 2018.
doi:10.2528/PIERM18062301
10. Yang, Y., Q. Chu, and C. Mao, "Multiband MIMO antenna for GSM, DCS, and LTE indoor applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1573-1576, 2016.
doi:10.1109/LAWP.2016.2517188
11. Sun, Y., M. Tian, and G. S. Cheng, "Characteristic mode-based neutralization line design for MIMO antenna," International Journal of Antennas and Propagation, Jul. 30, 2022.
12. Ou Yang, J., F. Yang, and Z.Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 310-313, 2011.
doi:10.1109/LAWP.2011.2140310
13. Hussain, M., Q. Abbas, S. H. H. Gardzi, M. Alibakhshikenari, F. Falcone, and E. Limiti, "Ultra-wideband MIMO antenna realization for indoor Ka-band applications," 2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 108-109, 2022.
doi:10.23919/USNC-URSINRSM57467.2022.9881413
14. Saravanan, M., V. B. Geo, and S. M. Umarani, "Gain enhancement of patch antenna integrated with metamaterial inspired superstrate," J. Electr. Sys. Info. Technol., Vol. 5, 263-270, 2018.
15. Samantaray, D. and S. Bhattacharyya, "A gain-enhanced slotted patch antenna using metasurface as superstrate configuration," IEEE Trans. Antennas Propag., Vol. 68, 6548-6556, 2020.
doi:10.1109/TAP.2020.2990280
16. Arnmanee, P. and C. Phongcharoenpanich, "Improved microstrip antenna with HIS elements and FSS superstrate for 2.4 GHz band applications," Int. J. Antennas Propag., Vol. 2018, 1-11, 2018.
doi:10.1155/2018/9145373
17. Kushwaha, N., R. Kumar, and T. Oli, "Design of a high-gain ultra-wideband slot antenna using frequency selective surface," Microwave Opt. Technol. Lett., Vol. 56, 1498-1502, 2014.
doi:10.1002/mop.28324
18. Yuan, Y., X. Xi, and Y. Zhao, "Compact UWB FSS reflector for antenna gain enhancement," IET Microwaves Antennas Propag., Vol. 13, 1749-1755, 2019.
doi:10.1049/iet-map.2019.0083
19. Hsing-Yi, C. and Y. Tao, "Bandwidth enhancement of a U-slot patch antenna using dual-band frequency-selective surface with double rectangular ring elements," Microwave Opt. Technol. Lett., Vol. 53, 1547-1553, 2011.
20. Adelson, M. L., O. N. Henrique, H. O. C. Nilson, and J. P. da-Silva, "Effect of metamaterial cells array on a microstrip patch antenna design," J. Microwaves Optoelectron. Electromag. Appl., Vol. 19, 327-342, 2020.
21. Adibi, S., M. A. Honarvar, and A. Lalbakhsh, "Gain enhancement of wideband circularly polarized UWB antenna using FSS," Radio Sci., Vol. 56, e2020RS007098, 2021.
22. Afzal, M. U., A. Lalbakhsh, and K. P. Esselle, "Electromagnetic-wave beam-scanning antenna using near-field rotatable graded-dielectric plates," J. App. Phy., Vol. 124, 234901-234911, 2018.
doi:10.1063/1.5049204
23. Mackay, A., B. Sanz-Izquierdo, and E. A. Parker, "Evolution of frequency selective surfaces," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 2, 1-7, 2014.
24. Nair, R. U. and R. M. Jha, "Electromagnetic design and performance analysis of airborne radomes: Trends and perspectives antenna applications corner," Anten. Propag. Mag., Vol. 56, 276-298, 2014.
doi:10.1109/MAP.2014.6931715
25. Luukkonen, O., F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Trans. Antennas Propag., Vol. 57, 3119-3125, 2009.
doi:10.1109/TAP.2009.2028601
26. Zahirjoozdani, M., M. Khalajamirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electron. Lett., Vol. 52, 767-768, 2016.
doi:10.1049/el.2016.0336
27. Hiranandani, M. A., A. B. Yakovlev, and A. A. Kishk, "Artificial magnetic conductors realized by frequency-selective surfaces on a grounded dielectric slab for antenna applications," IEEE Proc. Microw. Antennas Propag., Vol. 153, 487-493, 2006.
doi:10.1049/ip-map:20050156
28. Mark, R., N. Rajak, K. Mandal, and S. Das, "Isolation and gain enhancement using metamaterial-based super-strate for MIMO applications," Radioengineering, Vol. 28, No. 4, 689-695, 2019.
doi:10.13164/re.2019.0689
29. Peng, H., R. Zhi, Q. Yang, J. Cai, Y. Wan, and G. Liu, "Design of a MIMO antenna with high gain and enhanced isolation for WLAN applications," Electron., Vol. 10, No. 14, 1659, 2021.
doi:10.3390/electronics10141659
30. Jiang, H., L. M. Si, W. Hu, and X. Lv, "A symmetrical dual-beam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications," IEEE Photonics J., Vol. 11, No. 1, 1-9, 2019.
31. Lin, M., P. Liu, and Z. Guo, "Gain-enhanced Ka-band MIMO antennas based on the SIW corrugated technique," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3084-3087, 2017.
doi:10.1109/LAWP.2017.2761903
32. Nguyen, N. L., "Gain enhancement for MIMO antenna using metamaterial structure," Int. J. Microw. Wirel. Technolo., Vol. 11, No. 8, 851-862, 2019.
doi:10.1017/S175907871900059X
33. Khajeh-Khalili, F., M. A. Honarvar, M. Naser-Moghadasi, and M. Dolatshahi, "Gain enhancement and mutual coupling reduction of multiple-intput multiple-output antenna for millimeter-wave applications using two types of novel metamaterial structures," Int. J. RF Microw. Comp. Aided Eng., Vol. 30, No. 1, e22006, 2020.
34. Firmansyah, T., H. Herudin, S. Suhendar, R. Wiryadinata, M. I. Santoso, Y. R. Denny, and T. Supriyanto, "Bandwidth and gain enhancement of MIMO antenna by using ring and circular parasitic with air-gap microstrip structure," TELKOMNIKA, Vol. 15, No. 3, 1155-1163, 2017.
doi:10.12928/telkomnika.v15i3.6377
35. Niu, Z., H. Zhang, Q. Chen, and T. Zhong, "Isolation enhancement in closely coupled dual-band MIMO patches antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 8, 1686-1690, 2019.
doi:10.1109/LAWP.2019.2928230
36. Mohanty, A., B. R. Behera, and N. Nasimuddin, "Hybrid metasurface loaded tri-port compact antenna with gain enhancement and pattern diversity," Int. J. RF Microw. Comp. Aided Eng., Vol. 31, No. 11, e22795, 2021.
37. Ullah, H., S. U. Rahman, Q. Cao, I. Khan, and H. Ullah, "Design of SWB MIMO antenna with extremely wide-band isolation," Electron., Vol. 9, No. 1, 194, 2020.
doi:10.3390/electronics9010194
38. Jabire, A. H., H. X. Zheng, A. Abdu, and Z. Song, "Characteristic mode analysis and design of wide band MIMO antenna consisting of metamaterial unit cell," Electron., Vol. 8, No. 1, 68, 2019.
doi:10.3390/electronics8010068
39. Khan, I., K. Zhang, Q. Wu, I. Ullah, L. Ali, H. Ullah, and S. U. Rahman, "A wideband high-isolation microstrip MIMO circularly-polarized antenna based on parasitic elements," Materials, Vol. 16, No. 1, 103, Jan. 2023.
doi:10.3390/ma16010103
40. Rahman, S. U., H. Deng, M. Sajjad, A. Rauf, Z. Shafiq, M. Ahmad, and S. Iqbal, "Angularly stable frequency selective surface for the gain enhancement of isolated multiple input multiple output antenna," Microwave Opt. Technol. Lett., Vol. 63, No. 11, 2803-2810, Nov. 2021.
doi:10.1002/mop.32980
41. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.
42. Khan, I., Q. Wu, I. Ullah, S. U. Rahman, H. Ullah, and K. Zhang, "Designed circularly polarized two-port microstrip MIMO antenna for WLAN applications," Applied Sciences, Vol. 12, No. 3, 1068, Jan. 20, 2022.
doi:10.3390/app12031068