Vol. 178
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-10-03
Linear Sampling Method Imaging of Three-Dimensional Conducting Targets from Limited Apertures via Phase-Delay-Constrained Formulations
By
Progress In Electromagnetics Research, Vol. 178, 63-81, 2023
Abstract
The linear sampling method (LSM) is a qualitative inverse scattering technique for reconstructing the shape of a target. It has several beneficial qualities, including the avoidance of nonlinear optimization and simplified scattering approximations. However, it often struggles when sensors can only be placed on one side of the target. In this paper, we investigate two alternative LSM formulations for overcoming the limited-aspect challenge. The first, the phase-delay frequency variation LSM (PDFV-LSM), incorporates coherent processing across frequency to improve discrimination in the range direction. The second, the phase-encoded LSM (PE-LSM), enhances the PDFV-LSM approach with a receive-beamforming operation to decrease the complexity of the inverse problem. We apply both techniques to simulated data from three-dimensional targets and three-dimensional limited-aspect arrays. We generate three-dimensional reconstructions and compare them to reconstructions from both the conventional LSM and conventional backprojection-based processing. The results demonstrate superior reconstruction fidelity for either the PDFV-LSM, the PE-LSM, or both, across a wide variety of imaging scenarios due to finer range resolution. They also demonstrate trade-offs between the two enhanced LSM techniques, with the PE-LSM achieving better range resolution and robustness to noise and the PDFV-LSM achieving better lateral resolution.
Citation
Matthew Burfeindt, and Hatim F. Alqadah, "Linear Sampling Method Imaging of Three-Dimensional Conducting Targets from Limited Apertures via Phase-Delay-Constrained Formulations," Progress In Electromagnetics Research, Vol. 178, 63-81, 2023.
doi:10.2528/PIER23040504
References

1. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Med. Imag., Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334

2. Wang, Y. M. and W. C. Chew, "An iterative solution of the two-dimensional electromagnetic inverse scattering problem," Int. J. Imag. Syst. Technol., Vol. 1, No. 1, 100-108, 1989.
doi:10.1002/ima.1850010111

3. Cui, T. J. and W. C. Chew, "Inverse scattering of two-dimensional dielectric objects buried in a lossy Earth using the distorted Born iterative method," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 2, 339-346, 2001.
doi:10.1109/36.905242

4. Van den Berg, P. M. and A. Abubakar, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013

5. Gilmore, C., P. Mojabi, and J. LoVetri, "Comparison of an enhanced distorted born iterative method and the multiplicative-regularized contrast source inversion method," IEEE Trans. Ant. Prop., Vol. 57, No. 8, 2341-2351, 2009.
doi:10.1109/TAP.2009.2024478

6. Poli, L., G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a local shape function Bayesian compressive sensing approach," Journal of the Optical Society of America, Vol. 30, No. 6, 1261-1272, 2013.
doi:10.1364/JOSAA.30.001261

7. Takenaka, T., Z. Q. Meng, T. Tanaka, and W. C. Chew, "Local shape function combined with genetic algorithm applied to inverse scattering for strips," Microw. Opt. Technol. Lett., Vol. 16, 337-341, 1997.
doi:10.1002/(SICI)1098-2760(19971220)16:6<337::AID-MOP5>3.0.CO;2-L

8. Otto, G. P. and W. C. Chew, "Microwave inverse scattering --- local shape function imaging for improved resolution of strong scatterers," IEEE Trans. Microw. Theory Technol., Vol. 42, No. 1, 137-141, 1994.
doi:10.1109/22.265541

9. Ye, X., "Electromagnetic imaging of wave impenetrable objects," Proc. 11th Eur. Conf. Antennas Propag., 1421-1428, Paris, France, 2017.

10. Ye, X., Y. Zhong, and X. Chen, "Reconstructing perfectly electric conductors by the subspace-based optimization method with continuous variables," Inverse Problems, Vol. 27, No. 55011, 2011.

11. Shen, J., Y. Zhong, X. Chen, and L. Ran, "Inverse scattering problems of reconstructing perfectly electric conductors with TE illumination," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4713-4721, Sep. 2013.
doi:10.1109/TAP.2013.2271891

12. Bevacqua, M. and T. Isernia, "Shape reconstruction via equivalence principles, constrained inverse source problems and sparsity promotion," Progress In Electromagnetic Research, Vol. 158, 37-48, 2017.
doi:10.2528/PIER16111404

13. Bevacqua, M. and R. Palmeri, "Qualitative methods for the inverse obstacle problem: A comparison on experimental data," Journal of Imaging, Vol. 5, No. 4, 47, 2019.
doi:10.3390/jimaging5040047

14. Stevanovic, M., L. Crocco, A. Djordjevic, and A. Nehorai, "Higher order sparse microwave imaging of PEC scatterers," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 988-997, 2016.
doi:10.1109/TAP.2016.2521879

15. Vojnovic, N., M. Stevanovic, L. Crocco, and A. Djordjevic, "High-order sparse shape imaging of pec and dielectric targets using TE polarized fields," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 2035-2043, 2018.
doi:10.1109/TAP.2018.2809455

16. Nikolic, M. M., A. Nehorai, and A. R. Djordjevic, "Electromagnetic imaging of hidden 2-D PEC targets using sparse-signal modeling," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 5, 2707-2721, 2013.
doi:10.1109/TGRS.2012.2215042

17. Wang, F. F. and Q. H. Liu, "A Bernoulli-Gaussian binary inversion method for high-frequency electromagnetic imaging of metallic reflectors," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3184-3193, 2020.
doi:10.1109/TAP.2019.2952005

18. Soldovieri, F., A. Brancaccio, G. Leone, and R. Pierri, "Shape reconstruction of perfectly conducting objects by multiview experimental data," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 1, 65-71, 2005.
doi:10.1109/TGRS.2004.839432

19. Solimene, R., A. Buonanno, F. Soldovieri, R. Pierri, and , "Physical optics imaging of 3-D PEC objects: Vector and multipolarized approaches," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 4, 1799-1808, 2010.
doi:10.1109/TGRS.2009.2035053

20. Cakoni, F., D. Colton, and P. Monk, The Linear Sampling Method in Inverse Scattering Theory, Society for Industrial and Applied Mathematics, 2011.

21. Colton, D., H. Haddar, and M. Piana, "The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, Vol. 19, S105-S137, 2003.
doi:10.1088/0266-5611/19/6/057

22. Cakoni, F. and D. Colton, "The linear sampling method for cracks," Inverse Problems, Vol. 19, 279-295, 2003.
doi:10.1088/0266-5611/19/2/303

23. Cakoni, F., D. Colton, and H. Haddar, "The linear sampling method for anisotropic media," J. Comp. App. Math., Vol. 146, 285-299, 2002.
doi:10.1016/S0377-0427(02)00361-8

24. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563

25. Guzina, B., F. Cakoni, and C. Bellis, "On the multifrequency obstacle reconstruction via the linear sampling method," Inverse Problems, Vol. 29, 125005, 2010.
doi:10.1088/0266-5611/26/12/125005

26. Catapano, I., F. Soldovieri, and L. Crocco, "On the feasibility of the linear sampling method for 3D GPR surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.
doi:10.2528/PIER11042704

27. Ambrosanio, M., M. Bevacqua, T. Isernia, and V. Pascazio, "Performance analysis of tomographic methods against experimental contactless multistatic ground penetrating radar," IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, Vol. 14, 1171-1183, 2021.
doi:10.1109/JSTARS.2020.3034996

28. Catapano, I., L. Crocco, and T. Isernia, "Improved sampling methods for shape reconstruction of 3-D buried targets," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3265-3273, 2008.
doi:10.1109/TGRS.2008.921745

29. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, No. 4, 591-595, 2000.
doi:10.1088/0266-5611/17/4/301

30. Guo, Y., P. Monk, and D. Colton, "The linear sampling method for sparse small aperture data," Applicable Analysis, Vol. 95, No. 8, 1599-1615, 2016.
doi:10.1080/00036811.2015.1065317

31. Haddar, H., A. Lechleiter, and S. Marmorat, "An improved time domain linear sampling method for Robin and Neumann obstacles," Applicable Analysis, Vol. 93, No. 2, 369-390, 2014.
doi:10.1080/00036811.2013.772583

32. Audibert, L. and H. Haddar, "The generalized linear sampling method for limited aperture measurements," SIAM J. Imag. Sci., Vol. 10, No. 2, 845-870, 2017.
doi:10.1137/16M110112X

33. Kuo, Y.-H. and J.-F. Kiang, "Deep-learning linear sampling method for shape restoration of multilayered scatterers," Progress In Electromagnetics Research C, Vol. 124, 197-209, 2022.
doi:10.2528/PIERC22081005

34. Cakoni, F., M. Fares, and H. Haddar, "Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects," Inverse Problems, Vol. 22, 845-867, 2006.
doi:10.1088/0266-5611/22/3/007

35. Burfeindt, M. and H. Alqadah, "Boundary-condition-enhanced linear sampling method imaging of conducting targets from sparse receivers," IEEE Trans. Ant. Prop., Vol. 70, No. 3, 2246-2260, 2022.
doi:10.1109/TAP.2021.3118831

36. Burfeindt, M. and H. Alqadah, "Qualitative inverse scattering for sparse-aperture data collections using a phase-delay frequency variation constraint," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7530-7540, 2020.
doi:10.1109/TAP.2020.2998217

37. Burfeindt, M. and H. Alqadah, "Qualitative inverse scattering from three-dimensional limited apertures using phase-delay frequency variation regularization," Proc. IEEE Int. Symp. Ant. Prop. USNC-URSI Nat. Radio Sci. Meeting, 1696-1697, 2022.

38. Burfeindt, M. and H. Alqadah, "Receive-beamforming-enhanced linear sampling method imaging," Proceedings of the IEEE Research and Applications of Photonics in Defense (RAPID) Conference, 2021.

39. Burfeindt, M. and H. Alqadah, "Phase-encoded linear sampling method imaging of conducting surfaces from full and limited synthetic apertures," IEEE Open Journal of Antennas and Propagation, Vol. 3, 1191-1205, 2022.
doi:10.1109/OJAP.2022.3214613

40. Burfeindt, M. and H. Alqadah, "Ground penetrating radar imaging via the linear sampling method under a phase-encoded formulation," Proceedings of the IEEE Research and Applications of Photonics in Defense (RAPID) Conference, 2022.

41. Balanis, C., Advanced Engineering Electromagnetics, Sec. 6.6, John Wiley and Sons, 1989.

42. Alqadah, H. and M. Burfeindt, "An adaptive monostatic inverse scattering approach using virtual multistatic geometries," Proc. IEEE Radar Conference, 2023.

43. Akinci, M. N., M. Cayoren, and I. Akduman, "Near-field orthogonality sampling method for microwave imaging: Theory and experimental verification," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 8, 2489-2501, 2016.
doi:10.1109/TMTT.2016.2585488

44. Leem, K. H., J. Liu, and G. Pelekanos, "Two direct factorization methods for inverse scattering problems," Inverse Problems, Vol. 34, No. 12, 125004, 2018.
doi:10.1088/1361-6420/aae15e

45. Satopaa, V., J. Albrecht, D. Irwin, and B. Raghavan, "Finding a `Kneedle' in a Haystack: Detecting knee points in system behavior," Proc. Int. Conf. Dist. Comp. Sys. Workshops, 2011.

46. Hansen, P. C., Rank-Deficient and Discrete Ill-posed Problems, Society for Industrial and Applied Mathematics, 1998.
doi:10.1137/1.9780898719697

47. Crocco, L., I. Catapano, L. Di Donato, and T. Isernia, "The linear sampling method as a way to quantitative inverse scattering," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1844-1853, 2012.
doi:10.1109/TAP.2012.2186250

48. Palmeri, R., M. Bevacqua, L. Crocco, T. Isernia, and L. Di Donato, "Microwave imaging via distorted iterated virtual experiments," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 829-838, 2017.
doi:10.1109/TAP.2016.2633070

49. Geffrin, J. and P. Sabouroux, "Continuing with the Fresnel database: experimental setup and improvements in 3D scattering measurements," Inverse Problems, Vol. 25, No. 024001, 1-18, 2009.