Vol. 111
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-08-01
A Hybrid-Fed Dual-Polarized Patch Antenna with Metasurface Coverage for 5G Applications
By
Progress In Electromagnetics Research Letters, Vol. 111, 121-129, 2023
Abstract
A hybrid-fed dual-polarized antenna with matesurface coverage is proposed in this paper, which can be used for 5G mobile communication base station antennas. By placing the two feeding ports on different layers of dielectric plates in an orthogonal manner, and using electromagnetic coupling and slit coupling for feeding respectively, the antenna can achieve inter-port isolation higher than 35 dB in the operating frequency band. In order to widen the bandwidth and obtain higher gain, the metasurface covering unit is loaded above the patch. The metasurface layer contains an array of 5 × 5 square patch units printed on the top surface of the dielectric plate. The measurement results show that the proposed antenna has an impedance bandwidth of 12% (3.24 to 3.66 GHz). In addition, the antenna obtains a stable gain of about 5.32 dBi at 3.5 GHz. The proposed antenna meets all the requirements of base station antennas and can be a promising candidate for application in 5G base station systems.
Citation
Hanhan Guo, Dan Zhang, Yue Juan, Zhendong Ding, and Jin He, "A Hybrid-Fed Dual-Polarized Patch Antenna with Metasurface Coverage for 5G Applications," Progress In Electromagnetics Research Letters, Vol. 111, 121-129, 2023.
doi:10.2528/PIERL23040403
References

1. Jin, H., L. Zhu, H. Zou, et al. "A wideband dual-polarized antenna and its array with electrically downtilt function for 5G sub-6 GHz communication applications," IEEE Access, Vol. 8, 7672-7681, 2020.
doi:10.1109/ACCESS.2019.2959378

2. Carver, K. and J. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, Apr. 2003.
doi:10.1109/TAP.1981.1142523

3. Cui, Y. H., R. L. Li, and H. Z. Fu, "A broadband dual-polarized planar antenna for 2G/3G/LTE base stations," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4836-4840, Sep. 2014.
doi:10.1109/TAP.2014.2330596

4. Gou, Y. S., S. W. Yang, J. X. Li, and Z. P. Nie, "A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications," IEEE Trans. Antennas Propag., Vol. 6, No. 8, 4392-4395, Aug. 2014.
doi:10.1109/TAP.2014.2327653

5. Huang, H., Y. Liu, and S. X. Gong, "A broadband dual-polarized base station antenna with sturdy construction," IEEE Antennas Wireless Propag. Lett., Vol. 16, 665-668, 2017.
doi:10.1109/LAWP.2016.2598181

6. Chung, Y., S. Jeon, D. Ahn, J. Choi, and T. Itoh, "High isolation dual-polarized patch antenna using integrated defected ground structure," IEEE Microwave and Wireless Components Lett., Vol. 14, No. 1, 4-6, Jan. 2004.
doi:10.1109/LMWC.2003.821501

7. Miran, E. A. and M. Ciydem, "Dual-polarized elliptic-H slot-coupled patch antenna for 5G applications," Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 30, No. 4, 1204-1218, 2022.
doi:10.55730/1300-0632.3844

8. Alieldin, Y. Huang, M. Stanley, S. D. Joseph, and D. Lei, "A 5G MIMO antenna for broadcast and traffic communication topologies based on pseudo inverse synthesis," IEEE Access, Vol. 6, 65935-65944, 2018.
doi:10.1109/ACCESS.2018.2878639

9. Hua, C., R. Li, Y. Wang, and Y. Lu, "Dual-polarized filtering antenna with printed Jerusalem-cross radiator," IEEE Access, Vol. 6, 9000-9005, 2018.
doi:10.1109/ACCESS.2018.2803790

10. Huang, H., X. P. Li, and Y. M. Liu, "5G MIMO antenna based on vector synthetic mechanism," IEEE Antennas Wireless Propag. Lett., Vol. 17, 1052-1055, 2018.
doi:10.1109/LAWP.2018.2830807

11. Lin, F. H. and Z. N. Chen, "Low-profile wideband metasurface antennas using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1706-1713, 2017.
doi:10.1109/TAP.2017.2671036

12. Holloway, C. L., et al. "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714

13. Zhang, L., et al. "Advances in full control of electromagnetic waves with metasurfaces," Advanced Optical Materials, Vol. 4, No. 6, 818-833, 2016.
doi:10.1002/adom.201500690

14. Zhu, H. L., S. W. Cheung, X. H. Liu, and T. I. Yuk, "Design of polarization reconfgurable antenna using metasurface," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2891-2898, Jun. 2014.
doi:10.1109/TAP.2014.2310209

15. Liu, W., et al. "Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3325-3329, Jun. 2015.
doi:10.1109/TAP.2015.2429741

16. Croq, F. and D. M. Pozar, "Millimeter-wave design of wide-band aperture-coupled stacked microstrip antennas," IEEE Trans. Antennas Propag., Vol. 39, No. 12, 1770-1776, Apr. 1991.
doi:10.1109/8.121599