1. Jin, H., L. Zhu, H. Zou, et al. "A wideband dual-polarized antenna and its array with electrically downtilt function for 5G sub-6 GHz communication applications," IEEE Access, Vol. 8, 7672-7681, 2020.
doi:10.1109/ACCESS.2019.2959378
2. Carver, K. and J. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, Apr. 2003.
doi:10.1109/TAP.1981.1142523
3. Cui, Y. H., R. L. Li, and H. Z. Fu, "A broadband dual-polarized planar antenna for 2G/3G/LTE base stations," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4836-4840, Sep. 2014.
doi:10.1109/TAP.2014.2330596
4. Gou, Y. S., S. W. Yang, J. X. Li, and Z. P. Nie, "A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications," IEEE Trans. Antennas Propag., Vol. 6, No. 8, 4392-4395, Aug. 2014.
doi:10.1109/TAP.2014.2327653
5. Huang, H., Y. Liu, and S. X. Gong, "A broadband dual-polarized base station antenna with sturdy construction," IEEE Antennas Wireless Propag. Lett., Vol. 16, 665-668, 2017.
doi:10.1109/LAWP.2016.2598181
6. Chung, Y., S. Jeon, D. Ahn, J. Choi, and T. Itoh, "High isolation dual-polarized patch antenna using integrated defected ground structure," IEEE Microwave and Wireless Components Lett., Vol. 14, No. 1, 4-6, Jan. 2004.
doi:10.1109/LMWC.2003.821501
7. Miran, E. A. and M. Ciydem, "Dual-polarized elliptic-H slot-coupled patch antenna for 5G applications," Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 30, No. 4, 1204-1218, 2022.
doi:10.55730/1300-0632.3844
8. Alieldin, Y. Huang, M. Stanley, S. D. Joseph, and D. Lei, "A 5G MIMO antenna for broadcast and traffic communication topologies based on pseudo inverse synthesis," IEEE Access, Vol. 6, 65935-65944, 2018.
doi:10.1109/ACCESS.2018.2878639
9. Hua, C., R. Li, Y. Wang, and Y. Lu, "Dual-polarized filtering antenna with printed Jerusalem-cross radiator," IEEE Access, Vol. 6, 9000-9005, 2018.
doi:10.1109/ACCESS.2018.2803790
10. Huang, H., X. P. Li, and Y. M. Liu, "5G MIMO antenna based on vector synthetic mechanism," IEEE Antennas Wireless Propag. Lett., Vol. 17, 1052-1055, 2018.
doi:10.1109/LAWP.2018.2830807
11. Lin, F. H. and Z. N. Chen, "Low-profile wideband metasurface antennas using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1706-1713, 2017.
doi:10.1109/TAP.2017.2671036
12. Holloway, C. L., et al. "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714
13. Zhang, L., et al. "Advances in full control of electromagnetic waves with metasurfaces," Advanced Optical Materials, Vol. 4, No. 6, 818-833, 2016.
doi:10.1002/adom.201500690
14. Zhu, H. L., S. W. Cheung, X. H. Liu, and T. I. Yuk, "Design of polarization reconfgurable antenna using metasurface," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2891-2898, Jun. 2014.
doi:10.1109/TAP.2014.2310209
15. Liu, W., et al. "Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3325-3329, Jun. 2015.
doi:10.1109/TAP.2015.2429741
16. Croq, F. and D. M. Pozar, "Millimeter-wave design of wide-band aperture-coupled stacked microstrip antennas," IEEE Trans. Antennas Propag., Vol. 39, No. 12, 1770-1776, Apr. 1991.
doi:10.1109/8.121599