Vol. 111
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-06-17
Research on a New Miniaturization Method of Patch Antenna Based on Metal Strip
By
Progress In Electromagnetics Research Letters, Vol. 111, 9-16, 2023
Abstract
A new miniaturized patch antenna based on a metal strip is proposed in this paper. The antenna is designed by adding a middle metal strip layer to the substrate of a traditional rectangular patch antenna. By increasing the length of the metal strip, the working frequency of the patch antenna can be continuously reduced without significantly impacting the radiation pattern. The simulation results indicate that as the metal strip length increases from 5 mm to 25 mm, the working frequency of the patch antenna decreases from 2.39 GHz to 1.84 GHz, and its gain decreases from 6.72 dBi to 5.4 dBi. Two antenna samples with metal strip lengths of 5 mm and 20 mm are fabricated. The experimental results indicate that their working frequencies are 2.64 GHz and 2.43 GHz, respectively. And the radiation patterns of two antennas are consistent with the simulated results. All results confirm the effectiveness of the proposed miniaturization method.
Citation
Yanwen Hu, Shoudong Li, Tingrong Zhang, Wenying Zhou, and Xiufang Wang, "Research on a New Miniaturization Method of Patch Antenna Based on Metal Strip," Progress In Electromagnetics Research Letters, Vol. 111, 9-16, 2023.
doi:10.2528/PIERL23032902
References

1. Zhao, A. B., J. Zhang, and G. Y. Tian, "Miniaturization of UHF RFID tag antenna sensors for corrosion characterization," IEEE Sensors Journal, Vol. 17, No. 23, 7908-7916, 2017.
doi:10.1109/JSEN.2017.2751587

2. So, K. K., H. Wong, K. M. Luk, and C. H. Chan, "Miniaturized circularly polarized patch antenna with low back radiation for GPS satellite communications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5934-5938, 2015.
doi:10.1109/TAP.2015.2488000

3. Xu, L. J., Y. X. Guo, and W. Wu, "Miniaturized circularly polarized loop antenna for biomedical applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 922-930, 2015.
doi:10.1109/TAP.2014.2387420

4. Juan, Y., W. C. Yang, and W. Q. Che, "Miniaturized low-pro le circularly polarized metasurface antenna using capacitive loading," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3527-3532, 2019.
doi:10.1109/TAP.2019.2902735

5. Salih, A. A. and M. S. Sharawi, "A dual-band highly miniaturized patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1783-1786, 2016.
doi:10.1109/LAWP.2016.2536678

6. Zhang, Y. D., C. R. Liu, X. G. Liu, K. Zhang, and X. M. Yang, "A wideband circularly polarized implantable antenna for 915 MHz ISM-band biotelemetry devices," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1473-1477, 2018.
doi:10.1109/LAWP.2018.2849847

7. Huang, J. T., J. H. Shiao, and J. M. Wu, "A miniaturized Hilbert inverted-F antenna for wireless sensor network applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 3100-3103, 2010.
doi:10.1109/TAP.2010.2052583

8. Amini, A., H. Oraizi, and M. A. Chaychi zadeh, "Miniaturized UWB log-periodic square fractal antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1322-1325, 2015.
doi:10.1109/LAWP.2015.2411712

9. Fallahpour, M., M. T. Ghasr, and R. Zoughi, "Miniaturized recon gurable multiband antenna for multiradio wireless communication," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6049-6059, 2014.
doi:10.1109/TAP.2014.2364293

10. Islam, M. M., M. T. Islam, and M. Samsuzzaman, M. R. I. Faruque, N. Misran, M. F. Mansor, "A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications," Materials, Vol. 8, No. 2, 392-407, 2015.
doi:10.3390/ma8020392

11. Dave, T. P. and J. M. Rathod, "A thin-layer dielectric and metamaterial unit-cell stack loaded miniaturized SRR-based antenna for triple narrow band 4G-LTE applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 5, e21659, 2019.
doi:10.1002/mmce.21659

12. Pedram, K., J. Nourinia, C. Ghobadi, N. Pouyanfar, and M. Karamirad, "Compact and miniaturized metamaterial-based microstrip fractal antenna with reconfigurable qualification," International Journal of Electronics and Communications, Vol. 114, 152959, 2020.
doi:10.1016/j.aeue.2019.152959

13. Lu, J. Y., H. C. Zhang, P. H. He, L. P. Zhang, and T. J. Cui, "Design of miniaturized antenna using corrugated microstrip," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1918-1924, 2020.
doi:10.1109/TAP.2019.2963209

14. Elijah, A. A. and M. Mokayef, "Miniature microstrip antenna for IoT application," Materials Today: Proceedings, Vol. 29, 43-47, 2020.
doi:10.1016/j.matpr.2020.05.678

15. Farahbakhsh, A. and D. Zarifi, "Miniaturization of patch antennas by curved edges," International Journal of Electronics and Communications, Vol. 117, 153125, 2020.
doi:10.1016/j.aeue.2020.153125

16. Jahani, S., J. Rashed-Mohassel, and M. Shahabadi, "Miniaturization of circular patch antennas using MNG metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1194-1196, 2010.
doi:10.1109/LAWP.2010.2098472

17. Farzami, F., K. Forooraghi, and M. Norooziarab, "Miniaturization of a microstrip antenna using a compact and thin magneto-dielectric substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1540-1542, 2011.
doi:10.1109/LAWP.2011.2181968

18. Bakhtiari, A., R. A. Sadeghzadeh, and M. N. Moghadasi, "Gain enhanced miniaturized microstrip patch antenna using metamaterial superstrates," IETE Journal of Research, Vol. 65, No. 5, 635-640, 2019.
doi:10.1080/03772063.2018.1447406

19. Li, M. J., K. M. Luk, L. Ge, and K. Zhang, "Miniaturization of magnetoelectric dipole antenna by using metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4914-4918, 2016.
doi:10.1109/TAP.2016.2599176

20. Ouedraogo, R. O., E. J. Rothwell, K. Fuch, E. J. Rothwell, and A. R. Diaz, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699

21. Adhiyoga, Y. G., S. F. Rahman, C. Apriono, and E. T. Rahardjo, "Miniaturized 5G antenna with enhanced gain by using stacked structure of split-ring resonator array and magneto-dielectric composite material," IEEE Access, Vol. 10, 35876-35887, 2022.
doi:10.1109/ACCESS.2022.3163285

22. Chen, D. X., W. C. Yang, W. Q. Che, and Q. Xue, "Miniaturized wideband metasurface antennas using cross-layer capacitive loading," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 1, 19-23, 2022.
doi:10.1109/LAWP.2021.3115356

23. Li, M., L. J. Jiang, and K. L. Yeung, "Novel and efficient parasitic decoupling network for closely coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3574-3585, 2019.
doi:10.1109/TAP.2019.2902656

24. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

25. Ghosh, J., D. Mitra, and S. Das, "Mutual coupling reduction of slot antenna array by controlling surface wave propagation," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1352-1357, 2019.
doi:10.1109/TAP.2018.2883524

26. Wang, Y. and Z. W. Du, "A wideband printed dual-antenna system with a novel neutralization line for mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1428-1431, 2013.
doi:10.1109/LAWP.2013.2287199

27. Sun, L. B., Y. Li, and Z. J. Zhang, "Decoupling between extremely closely spaced patch antennas by mode cancellation method," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 6, 3074-3083, 2021.
doi:10.1109/TAP.2020.3030922

28. Zhou, W. Y., Z. L. Mei, M. Lu, and Y. B. Zhu, "lmproved fully-connected neural network approach for decoupling microstrip antenna array design," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 14, 1-14, 2022.
doi:10.1080/09205071.2022.2051756