Vol. 111
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-06-18
Ultra-Compact Band-Pass Filter at Low Frequency of Operation
By
Progress In Electromagnetics Research Letters, Vol. 111, 17-25, 2023
Abstract
An ultra-compact band-pass filter is presented in this paper. The filter is designed to operate in the medical implants communication service (MICS) band ranging from 401 MHz to 406 MHz. The filter is designed on a Rogers RT/duroid substrate with εr = 2.94 and tanδ = 0.0012. The overall size of the proposed filter is only 30.6 mm x 18.5 mm (0.058λg x 0.035λg), making it suitable for compact, portable devices. An equivalent circuit model is also proposed for the analysis of the filter geometry. From the circuit model, it can be concluded that the filter exhibits the characteristics of a dual-composite right left-handed (D-CRLH) transmission line. This is also confirmed from the dispersion characteristics. The salient features of the proposed filter include ultra-compactness at low operating frequency, harmonic suppression of 3.7 times of the passband frequency, fractional bandwidth of 4.45%, and good roll-off rate of 297.6 dB/GHz in the lower stopband and 116.4 dB/GHz in the upper stopband.
Citation
Basil J. Paul, and Shanta Mridula, "Ultra-Compact Band-Pass Filter at Low Frequency of Operation," Progress In Electromagnetics Research Letters, Vol. 111, 17-25, 2023.
doi:10.2528/PIERL23032804
References

1. Mandal, A. and T. Moyra, "Compact low-pass filter (LPF) with wide harmonic suppression using interdigital capacitor," Frequenz, Vol. 77, No. 1-2, 1-8, 2022.
doi:10.1515/freq-2022-0008

2. Fathi, E., F. Setoudeh, and M. B. Tavakoli, "Design and fabrication of a novel multilayer bandpass filter with high-order harmonics suppression using parallel coupled microstrip filter," ETRI Journal, Vol. 44, No. 2, 260-273, 2021.
doi:10.4218/etrij.2020-0330

3. Das, T. K. and S. Chatterjee, "Improved second harmonic suppression in a compact coupled-line bandpass filter with triangular corrugations," Microsystem Technologies, Vol. 25, 1945-1956, 2018.

4. Idris, I. H., M. R. Hamid, K. Kamardin, M. K. A. Rahim, F. Zubir, and H. A. Majid, "Band-pass filter with harmonics suppression capability," International Journal of Electrical and Computer Engineering, Vol. 8, No. 4, 2512-2520, 2018.

5. Das, T. K. and S. Chatterjee, "Harmonic suppression by using T-shaped spur-line in a compact hairpin-line bandpass filter," Radioengineering, Vol. 30, No. 2, 296-303, 2021.
doi:10.13164/re.2021.0296

6. Chaimool, S. and P. Akkaraekthalin, "Miniaturized wideband bandpass filter with wide stopband using metamaterial-based resonator and defected ground structure," Radioengineering, Vol. 21, No. 2, 611-616, 2012.

7. Lotfi-Neyestanak, A. A. and A. Lalbakhsh, "Improved microstrip hairpin-line bandpass filters for spurious response suppression," Electronics Letters, Vol. 48, No. 14, 858-859, 2012.
doi:10.1049/el.2012.0967

8. Chen, W.-L. and G.-M.Wang, "Effective design of novel compact fractal-shaped microstrip coupled-line bandpass filters for suppression of the second harmonic," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 2, 74-76, 2009.
doi:10.1109/LMWC.2008.2011311

9. Duraiswamy, P., "Compact capacitor-loaded tunable microstrip bandpass filter for low-frequency applications," Journal of The Institution of Engineers (India): Series B, Vol. 103, 1453-1457, 2022.
doi:10.1007/s40031-022-00763-1

10. Jovanovic, S. and A. Nesic, "A new microstrip band-pass filter for UHF range," TELSIKS 2005 --- 2005 UTH International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services, Vol. 12005, 167-169, Nis, Serbia, 2005.
doi:10.1109/TELSKS.2005.1572085

11. Hasan, A. B., M. T. Rahman, A. Kahhar, T. Trina, and P. K. Saha, "Design of miniature type parallel coupled microstrip hairpin filter in UHF range," AIP Conference Proceedings, Vol. 1919, 020017-1-020017-7, 2017.

12. Peng, L. and X. Jiang, "Ultra-compact UHF band-pass filter designed by archimedes spiral capacitor and shorted-loaded stubs," Frequenz, Vol. 69, No. 1-2, 71-73, 2014.
doi:10.1515/freq-2014-0048

13. Jang, G. and S. Kahng, "Compact metamaterial zeroth-order resonator bandpass filter for a UHF band and its stopband improvement by transmission zeros," IET Microw. Antennas Propag., Vol. 5, No. 10, 1175-1181, 2011.
doi:10.1049/iet-map.2010.0300

14. Choudhary, D. K. and R. K. Chaudhary, "A compact via-less metamaterial wideband bandpass filter using split circular rings and rectangular stub," Progress In Electromagnetics Research Letters, Vol. 72, 99-106, 2018.
doi:10.2528/PIERL17092503

15. Caloz, C., "Dual composite right left handed (D-CRLH) transmission line metamaterial," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 11, 585-587, 2006.
doi:10.1109/LMWC.2006.884773

16. Garg, P. and P. Jain, "Design and analysis of a bandpass filter using dual composite right/left handed (D-CRLH) transmission line showing bandwidth enhancement," Wireless Personal Communications, Vol. 120, 1705-1720, 2021.
doi:10.1007/s11277-021-08529-6

17. Hoseini, S. M. S. N., R. Zaker, and K. Monfaredi, "A microstrip folded compact wideband band-pass filter with wide upper stopband," ETRI Journal, Vol. 43, No. 6, 957-965, 2021.
doi:10.4218/etrij.2020-0262

18. Wu, G.-C., G.-M. Wang, and Y.-W. Wang, "Novel simplified dual-composite right/left handed transmission line and its application in bandpass filter with dual notch bands," Progress In Electromagnetics Research C, Vol. 44, 123-131, 2013.
doi:10.2528/PIERC13082602

19. Shen, G., X. Wang, W. Che, W. Feng, W. Yang, and K. Deng, "Miniaturized high-performance D-CRLH resonator and filter based on accurate equivalent circuit model," International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 1-3, Hsinchu, Taiwan, 2015.

20. Shen, G., W. Che, Q. Xue, and W. Yang, "Characteristics of dual composite right/left-handed unit cell and its applications to bandpass filter design," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 65, No. 6, 719-723, 2018.
doi:10.1109/TCSII.2017.2788050

21. Tong, W., Z. Hu, H. Zhang, C. Caloz, and A. Rennings, "Study and realisation of dual-composite right/left-handed coplanar waveguide metamaterial in MMIC technology," IET Microwaves, Antennas & Propagation, Vol. 2, No. 7, 731-736, 2008.
doi:10.1049/iet-map:20070180

22. Belenguer, A., J. Cascon, A. L. Borja, H. Esteban, and V. E. Boria, "Dual composite right-/left-handed coplanar waveguide transmission line using inductively connected split-ring resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 3035-3042, 2012.
doi:10.1109/TMTT.2012.2210438

23. Daw, A. F., P. A. Fawzey, and M. N. Adly, "Quad-band resonator depends on CRLH/D-CRLH structures," Microwaves & RF (MWRF), October 2019, available online: https://www.mwrf.com/technologies/components/article/21849975/quadband-resonator-depends-on-crlhdcrlh-structures.

24. Daw, A. F., M. A. Abdalla, and H. M. Elhennawy, "New configuration for multiband ultra compact gap resonator based D-CRLH," IEEE Middle East Conference on Antennas and Propagation (MECAP), 1-4, 2016.

25. Abdalla, M. A. and A. Fouad, "Integrated filtering antenna based on D-CRLH transmission lines for ultra-compact wireless applications," Progress In Electromagnetics Research C, Vol. 66, 29-38, 2016.
doi:10.2528/PIERC16050807

26. Paul, B. J., S. Mridula, B. Paul, and P. Mohanan, "Metamaterial inspired CPW fed compact low-pass filter," Progress In Electromagnetics Research C, Vol. 57, 173-180, 2015.
doi:10.2528/PIERC15032002

27. Paul, B. J., S. Mridula, A. Pradeep, and P. Mohanan, "Design of an ultra compact antenna for low frequency applications," Progress In Electromagnetics Research Letters, Vol. 105, 95-102, 2022.
doi:10.2528/PIERL22032103

28. Hong, J.-S., Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2011.
doi:10.1002/9780470937297

29. Varadan, V. K., K. J. Vinoy, and K. A. Jose, RF MEMS and Their Applications, John Wiley & Sons, 2003.

30. Olaode, O. O., W. D. Palmer, and W. T. Joines, "Effects of meandering on dipole antenna resonant frequency," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 122-125, 2012.
doi:10.1109/LAWP.2012.2184255

31. Olaode, O. O., W. D. Palmer, and W. T. Joines, "Characterization of meander dipole antennas with a geometry-based, frequency-independent lumped element model," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 346-349, 2019.

32. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2006.

33. Ryu, Y.-H., J.-H. Park, J.-H. Lee, J.-Y. Kim, and H.-S. Tae, "DGS dual composite right/left handed transmission line," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 7, 434-436, 2008.
doi:10.1109/LMWC.2008.924909

34. Lu, K., G.-M. Wang, and B. Tian, "Design of dual-band branch-line coupler based on shunt open-circuit DCRLH cells," Radioengineering, Vol. 22, No. 2, 618-623, 2013.

35. Eisenstadt, W. R. and Y. Eo, "S-parameter-based IC interconnect transmission line characterization," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 4, 483-490, 1992.
doi:10.1109/33.159877