Vol. 177
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-07-19
Remote Material Characterization with Complex Baseband FMCW Radar Sensors
By
Progress In Electromagnetics Research, Vol. 177, 107-126, 2023
Abstract
This paper presents the theoretical basis and experimental validation for a technique to remotely characterize materials using FMCW radar sensors with complex baseband architecture. Our theoretical work proves that the magnitude and phase of the input reflection coefficient of a material can be accurately extracted from the baseband data of a complex-baseband FMCW radar. This complex reflection coefficient can be used to calculate the dielectric constant, loss tangent, thickness, and layer setup of a material with high accuracy due to the extra information obtained from the phase of the reflection coefficient. The analysis starts with a theoretical model for the complex reflection coefficient of a flat material slab suspended in air. We then introduce a formulation for the complex reflection coefficient existing in the complex baseband of an FMCW radar signal. We finally present the experimental testing preformed using TI mmWave radar on two different material samples and introduce the test results for extracting the material dielectric properties and thickness using three different extraction methods compared against nominal values from literature. The test results prove the high accuracy of our technique resulting from the utilization of both magnitude and phase information of the input refection coefficient, despite the relatively long free-space measurement distance and the multi-path reflections test environment.
Citation
Ahmed M. Hegazy, Mostafa Alizadeh, Amr Samir, Mohamed Basha, and Safieddin Safavi-Naeini, "Remote Material Characterization with Complex Baseband FMCW Radar Sensors," Progress In Electromagnetics Research, Vol. 177, 107-126, 2023.
doi:10.2528/PIER23032403
References

1. Wagner, J., J. C. Barowski, and I. Rolfes, "A 3D printed elliptical mirror for material characterization using FMCW transceivers," Asia-Pacific Microwave Conference (APMC), 1-3, 2018.

2. Yaw, J. C., Measurement of dielectric material properties, application note, Rohde & Schwarz, 2012.

3. Junqueira, C., M. Perotoni, and D. R. Lima, "Microwave absorber materials characterization: Bulk absorbing and electrical/magnetic parameters," 2014 Inter. Telecom. Symposium (ITS), 1-5, 2014.

4. Zahid, A., H. T. Abbas, F. Sheikh, T. Kaiser, A. Zoha, M. Imran, and Q. H. Abbasi, "Monitoring health status and quality assessment of leaves using terahertz frequency," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1-2, 2019.

5. Aouabdia, N., B. Tahar, N. Eddine, and G. Alquie, "Rectangular patch resonator sensors for characterization of biological materials," IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), 1-2, 2014.

6. Obol, M., N. Al-Moayed, S. Naber, and M. Afsar, "Using coaxial probe for broadband microwave characterization of biological tissues," 38th European Microwave Conference, 1-4, 2008.

7. Samir, A., H. El-Sherif, S. Kishk, M. M. Abdel-Razzak, and M. Basha, "Linear and nonlinear properties of graphene at millimeter-wave for multiplier and mixer applications," Progress In Electromagnetics Research C, Vol. 81, 141-149, 2018.
doi:10.2528/PIERC17072403

8. Bronckers, L. A. and A. B. Smolders, "Broadband material characterization method using a CPW with a novel calibration technique," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1763-1766, 2016.
doi:10.1109/LAWP.2016.2535115

9. Kazemipour, A., S. K. Yee, M. Hudlicka, M. Salhi, T. Kleine-Ostmann, and T. Schrader, "Design and calibration of a compact quasi-optical system for material characterization in millimeter/sub-millimeter wave domain," IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 6, 1438-1445, 2014.
doi:10.1109/TIM.2014.2376115

10. Havrilla, M. and D. Nyquist, "Electromagnetic characterization of layered materials via direct and de-embed methods," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 1, 158-163, 2006.
doi:10.1109/TIM.2005.861249

11. You, K. Y., Microwave Systems and Applications, 1-434, IntechOpen, 2016.

12. Boybay, M. S. and O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 11, 3039-3046, 2012.
doi:10.1109/TIM.2012.2203450

13. Jha, A. K. and M. J. Akhtar, "Cavity based RF sensor for dielectric characterization of liquids," 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-4, 2014.

14. Obrzut, J., A. Hassan, and E. Garboczi, "Free space microwave non destructive characterization of composite materials," Proceedings of the ASNT, NDT of Composites, 1-4, 2015.

15. Will, B. and I. Rolfesv, "Application of the thru-network-line self-calibration method for free space material characterizations," 2012 International Conference on Electromagnetics in Advanced Applications, 1-4, 2012.

16. Chan, K. K., A. E. Tan, L. Li, and K. Rambabu, "Material characterization of arbitrarily shaped dielectrics based on reflected pulse characteristics," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 5, 1700-1709, 2015.
doi:10.1109/TMTT.2015.2418199

17. Pometcu, L., A. Sharaiha, R. Benzerga, R. D. Tamas, and P. Pouliguen, "Method for material characterization in a non-anechoic environment," Applied Physics Letters, Vol. 108, No. 16, 2016.
doi:10.1063/1.4947100

18. Barowski, J., M. Zimmermanns, and I. Rolfess, "Millimeter-wave characterization of dielectric materials using calibrated FMCW transceivers," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 8, 3683-3689, 2018.
doi:10.1109/TMTT.2018.2854180

19. Hegazy, A. M., Remote material characterization using mmWave FMCW radar with complex baseband, MASc Thesis, UWSpace, 2021.

20. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., Wiley, 2012.

21. Ramasubramanian, K. and B. Ginsburg, "AWR1243 sensor: Highly integrated 76-81-GHz radar front-end for emerging ADAS applications," Texas Instruments, White Paper, 2017.

22. Stove, A., "Linear FMCW radar techniques," Proceedings of the IEEE, Vol. 139, No. 5, 1992.

23. "AWR2243 single-chip 76- to 81-GHz FMCW transceiver," Texas Instruments, Datasheet, 2020.

24. Ramasubramanian, K., "Using a complex-baseband architecture in FMCW radar systems," Texas Instruments, White Paper, 2017.

25. Hegazy, A. M., M. Alizadeh, A. Samir, M. Chavoshi, M. A. Basha, and S. Safavi-Naeini, "3D-printed mmWave dual dielectric lens antenna for series-fed arrays," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1-2, 2022.

26. Vohra, N., J. S. Batista, and M. El-Shenawee, "Characterization of radar absorbing materials at 75 GHz-90 GHz using free-space system," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1-2, 2020.

27. Martinez, D. P., D. R. Somolinos, and B. P. Gallardo, "Electromagnetic characterization of materials through high accuracy free space measurements," 15th European Conference on Antennas and Propagation (EuCAP), 1-2, 2021.