1. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, No. 10, 7181-7188, 2008.
doi:10.1364/OE.16.007181
2. Zakir, S., R. M. H. Bilal, M. A. Naveed, M. A. Baqir, M. U. A. Khan, M. M. Ali, M. A. Saeed, M. Q. Mehmood, and Y. Massoud, "Polarization-insensitive, broadband, and tunable terahertz absorber using slotted-square graphene meta-rings," IEEE Photonics Journal, Vol. 15, No. 1, 1-8, 2022.
doi:10.1109/JPHOT.2022.3229900
3. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402
4. Faruque, M. R. I., A. M. Siddiky, E. Ahamed, M. T. Islam, and S. Abdullah, "Parallel LC shaped metamaterial resonator for C and X band satellite applications with wider bandwidth," Scientific Reports, Vol. 11, No. 1, 1-15, 2021.
doi:10.1038/s41598-020-79139-8
5. Ajewole, B., P. Kumar, and T. Afullo, "I-shaped metamaterial using SRR for multi-band wireless communication," Crystals, Vol. 12, No. 4, 559, 2022.
doi:10.3390/cryst12040559
6. Wang, B.-X., C. Xu, G. Duan, J. Jiang, W. Xu, Z. Yang, and Y. Wu, "Miniaturized and actively tunable triple-band terahertz metamaterial absorber using an analogy I-typed resonator," Nanoscale Research Letters, Vol. 17, No. 1, 35, 2022.
doi:10.1186/s11671-022-03677-5
7. Bilal, R. M. H., M. A. Baqir, P. K. Choudhury, M. Karaaslan, M. M. Ali, O. Alt lntas, A. A. Rahim, E. Unal, and C. Sabah, "Wideband microwave absorber comprising metallic split-ring resonators surrounded with E-shaped fractal metamaterial," IEEE Access, Vol. 9, 5670-5677, 2021.
doi:10.1109/ACCESS.2020.3048927
8. Li, H., J. Wang, X. Wang, Y. Feng, and Z. Sun, "Design and characterization of wideband terahertz metamaterial stop-band filter," Micromachines, Vol. 13, No. 7, 1034, 2022.
doi:10.3390/mi13071034
9. Guo, Q., Q. Peng, M. Qu, J. Su, and Z. Li, "Optical transparent metasurface for dual-band Wi-Fi shielding," Optics Express, Vol. 30, No. 5, 7793-7805, 2022.
doi:10.1364/OE.453357
10. Srilatha, K., B. T. P. Madhav, A. B. Badisa, S. Das, S. K. Patel, and J. Parmar, "Conformal and polarization adjustable cloaking metasurface utilizing graphene with low radar cross section for terahertz applications," Optical and Quantum Electronics, Vol. 54, No. 7, 454, 2022.
doi:10.1007/s11082-022-03863-w
11. Dhama, R., B. Yan, C. Palego, and Z. Wang, "Super-resolution imaging by dielectric superlenses: TiO2 metamaterial superlens versus BaTiO3 superlens," Photonics, Vol. 8, No. 6, 222, MDPI, 2021.
doi:10.3390/photonics8060222
12. Borhani-Kakhki, M. and T. A. Denidni, "Metamaterial enabled FSS for beam-tilting mm-Wave antenna applications," Handbook of Metamaterial-derived Frequency Selective Surfaces, 1-22, Springer Singapore, Singapore, 2022.
13. Yang, J. and Y.-S. Lin, "Design of tunable terahertz metamaterial sensor with single- and dual-resonance characteristic," Nanomaterials, Vol. 11, No. 9, 2212, 2021.
doi:10.3390/nano11092212
14. Li, T. Y., L. Wang, J. M. Wang, S. Li, and X. J. He, "A dual band polarization-insensitive tunable absorber based on terahertz MEMS metamaterial," Integrated Ferroelectrics, Vol. 151, No. 1, 157-163, 2014.
doi:10.1080/10584587.2014.901115
15. Al-Badri, K. S. L., A. Cinar, U. Kose, O. Ertan, and E. Ekmekci, "Monochromatic tuning of absorption strength based on angle-dependent closed-ring resonator-type metamaterial absorber," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1060-1063, 2016.
16. Chen, H., Z. Chen, H. Yang, L. Wen, Z. Yi, Z. Zhou, B. Dai, J. Zhang, X. Wu, and P. Wu, "Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene," RSC Advances, Vol. 12, No. 13, 7821-7829, 2022.
doi:10.1039/D2RA00611A
17. Jain, P., K. Prakash, G. M. Khanal, N. Sardana, S. Kumar, N. Gupta, and A. K. Singh, "Quad-band polarization sensitive terahertz metamaterial absorber using Gemini-shaped structure," Results in Optics, Vol. 8, 100254, 2022.
doi:10.1016/j.rio.2022.100254
18. Asgari, S. and T. Fabritius, "Graphene-based multiband chiral metamaterial absorbers comprised of square split-ring resonator arrays with different numbers of gaps, and their equivalent circuit model," IEEE Access, Vol. 10, 63658-63671, 2022.
doi:10.1109/ACCESS.2022.3183272
19. Feng, H., Z. Xu, K. Li, M. Wang, W. Xie, Q. Luo, B. Chen, W. Kong, and M. Yun, "Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials," Optics Express, Vol. 29, No. 5, 7158-7167, 2021.
doi:10.1364/OE.418865
20. Huang, X., M. Cao, D. Q. Wang, X. Li, J. Fan, and X. Li, "Broadband polarization-insensitive and oblique-incidence terahertz metamaterial absorber with multi-layered graphene," Optical Materials Express, Vol. 12, No. 2, 811-822, 2022.
doi:10.1364/OME.451450
21. Nejat, M. and N. Nozhat, "Design, theory, and circuit model of wideband, tunable and polarization-insensitive terahertz absorber based on graphene," IEEE Transactions on Nanotechnology, Vol. 18, 684-690, 2019.
doi:10.1109/TNANO.2019.2925964
22. Nickpay, M. R., M. Danaie, and A. Shahzadi, "A wideband and polarization-insensitive graphene-based metamaterial absorber," Superlattices and Microstructures, Vol. 150, 106786, 2021.
doi:10.1016/j.spmi.2020.106786
23. Norouzi-Razani, A. and P. Rezaei, "Broadband polarization insensitive and tunable terahertz metamaterial perfect absorber based on the graphene disk and square ribbon," Micro and Nanostructures, Vol. 163, 107153, 2022.
doi:10.1016/j.spmi.2022.107153
24. Wang, B.-X., X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, "Design of a four-band and polarization-insensitive terahertz metamaterial absorber," IEEE Photonics Journal, Vol. 7, No. 1, 1-8, 2014.
25. Han, X., Z. Zhang, and X. Qu, "A novel miniaturized tri-band metamaterial THz absorber with angular and polarization stability," Optik, Vol. 228, 166086, 2021.
doi:10.1016/j.ijleo.2020.166086