Vol. 116
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-04-30
A Triband Hexagonal Shaped Polarization Insensitive Absorber by Tuning Graphene Material in Terahertz Frequency Domain
By
Progress In Electromagnetics Research M, Vol. 116, 145-154, 2023
Abstract
Terahertz era is becoming a more prominent and expanding platform for a variety of applications. In this paper, we propose a triband absorber with a hexagon-shaped radiating patch for THz applications. The proposed structure has three layers: a hexagonal patch made of graphene as a radiating patch, a silicon layer as a dielectric substrate, and a bottom conductive layer made of gold to prevent EM wave transmission. The proposed structure operates at three resonant frequencies 0.38 THz, 1.23 THz, and 1.77 THz respectively. We may accomplish maximum absorption level (above 90%) and maximum absorption bandwidth by setting relevant chemical potential and relaxation times to 0.2 ev and 0.2 ps respectively. The proposed structure contains a lossy silicon substrate, which has a dielectric constant of 11.9 and a loss tangent of 2.5e-004. The proposed structure reveals a larger absorption [above 90%] for the operating frequencies, and the effect on absorbance for different modes is illustrated.
Citation
Nagandla Prasad, Pokkunuri Pardhasaradhi, Boddapati Taraka Phani Madhav, Vysyaraju Lokesh Raju, and Pucha Poorna Priya, "A Triband Hexagonal Shaped Polarization Insensitive Absorber by Tuning Graphene Material in Terahertz Frequency Domain," Progress In Electromagnetics Research M, Vol. 116, 145-154, 2023.
doi:10.2528/PIERM23031508
References

1. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, No. 10, 7181-7188, 2008.
doi:10.1364/OE.16.007181

2. Zakir, S., R. M. H. Bilal, M. A. Naveed, M. A. Baqir, M. U. A. Khan, M. M. Ali, M. A. Saeed, M. Q. Mehmood, and Y. Massoud, "Polarization-insensitive, broadband, and tunable terahertz absorber using slotted-square graphene meta-rings," IEEE Photonics Journal, Vol. 15, No. 1, 1-8, 2022.
doi:10.1109/JPHOT.2022.3229900

3. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

4. Faruque, M. R. I., A. M. Siddiky, E. Ahamed, M. T. Islam, and S. Abdullah, "Parallel LC shaped metamaterial resonator for C and X band satellite applications with wider bandwidth," Scientific Reports, Vol. 11, No. 1, 1-15, 2021.
doi:10.1038/s41598-020-79139-8

5. Ajewole, B., P. Kumar, and T. Afullo, "I-shaped metamaterial using SRR for multi-band wireless communication," Crystals, Vol. 12, No. 4, 559, 2022.
doi:10.3390/cryst12040559

6. Wang, B.-X., C. Xu, G. Duan, J. Jiang, W. Xu, Z. Yang, and Y. Wu, "Miniaturized and actively tunable triple-band terahertz metamaterial absorber using an analogy I-typed resonator," Nanoscale Research Letters, Vol. 17, No. 1, 35, 2022.
doi:10.1186/s11671-022-03677-5

7. Bilal, R. M. H., M. A. Baqir, P. K. Choudhury, M. Karaaslan, M. M. Ali, O. Alt lntas, A. A. Rahim, E. Unal, and C. Sabah, "Wideband microwave absorber comprising metallic split-ring resonators surrounded with E-shaped fractal metamaterial," IEEE Access, Vol. 9, 5670-5677, 2021.
doi:10.1109/ACCESS.2020.3048927

8. Li, H., J. Wang, X. Wang, Y. Feng, and Z. Sun, "Design and characterization of wideband terahertz metamaterial stop-band filter," Micromachines, Vol. 13, No. 7, 1034, 2022.
doi:10.3390/mi13071034

9. Guo, Q., Q. Peng, M. Qu, J. Su, and Z. Li, "Optical transparent metasurface for dual-band Wi-Fi shielding," Optics Express, Vol. 30, No. 5, 7793-7805, 2022.
doi:10.1364/OE.453357

10. Srilatha, K., B. T. P. Madhav, A. B. Badisa, S. Das, S. K. Patel, and J. Parmar, "Conformal and polarization adjustable cloaking metasurface utilizing graphene with low radar cross section for terahertz applications," Optical and Quantum Electronics, Vol. 54, No. 7, 454, 2022.
doi:10.1007/s11082-022-03863-w

11. Dhama, R., B. Yan, C. Palego, and Z. Wang, "Super-resolution imaging by dielectric superlenses: TiO2 metamaterial superlens versus BaTiO3 superlens," Photonics, Vol. 8, No. 6, 222, MDPI, 2021.
doi:10.3390/photonics8060222

12. Borhani-Kakhki, M. and T. A. Denidni, "Metamaterial enabled FSS for beam-tilting mm-Wave antenna applications," Handbook of Metamaterial-derived Frequency Selective Surfaces, 1-22, Springer Singapore, Singapore, 2022.

13. Yang, J. and Y.-S. Lin, "Design of tunable terahertz metamaterial sensor with single- and dual-resonance characteristic," Nanomaterials, Vol. 11, No. 9, 2212, 2021.
doi:10.3390/nano11092212

14. Li, T. Y., L. Wang, J. M. Wang, S. Li, and X. J. He, "A dual band polarization-insensitive tunable absorber based on terahertz MEMS metamaterial," Integrated Ferroelectrics, Vol. 151, No. 1, 157-163, 2014.
doi:10.1080/10584587.2014.901115

15. Al-Badri, K. S. L., A. Cinar, U. Kose, O. Ertan, and E. Ekmekci, "Monochromatic tuning of absorption strength based on angle-dependent closed-ring resonator-type metamaterial absorber," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1060-1063, 2016.

16. Chen, H., Z. Chen, H. Yang, L. Wen, Z. Yi, Z. Zhou, B. Dai, J. Zhang, X. Wu, and P. Wu, "Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene," RSC Advances, Vol. 12, No. 13, 7821-7829, 2022.
doi:10.1039/D2RA00611A

17. Jain, P., K. Prakash, G. M. Khanal, N. Sardana, S. Kumar, N. Gupta, and A. K. Singh, "Quad-band polarization sensitive terahertz metamaterial absorber using Gemini-shaped structure," Results in Optics, Vol. 8, 100254, 2022.
doi:10.1016/j.rio.2022.100254

18. Asgari, S. and T. Fabritius, "Graphene-based multiband chiral metamaterial absorbers comprised of square split-ring resonator arrays with different numbers of gaps, and their equivalent circuit model," IEEE Access, Vol. 10, 63658-63671, 2022.
doi:10.1109/ACCESS.2022.3183272

19. Feng, H., Z. Xu, K. Li, M. Wang, W. Xie, Q. Luo, B. Chen, W. Kong, and M. Yun, "Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials," Optics Express, Vol. 29, No. 5, 7158-7167, 2021.
doi:10.1364/OE.418865

20. Huang, X., M. Cao, D. Q. Wang, X. Li, J. Fan, and X. Li, "Broadband polarization-insensitive and oblique-incidence terahertz metamaterial absorber with multi-layered graphene," Optical Materials Express, Vol. 12, No. 2, 811-822, 2022.
doi:10.1364/OME.451450

21. Nejat, M. and N. Nozhat, "Design, theory, and circuit model of wideband, tunable and polarization-insensitive terahertz absorber based on graphene," IEEE Transactions on Nanotechnology, Vol. 18, 684-690, 2019.
doi:10.1109/TNANO.2019.2925964

22. Nickpay, M. R., M. Danaie, and A. Shahzadi, "A wideband and polarization-insensitive graphene-based metamaterial absorber," Superlattices and Microstructures, Vol. 150, 106786, 2021.
doi:10.1016/j.spmi.2020.106786

23. Norouzi-Razani, A. and P. Rezaei, "Broadband polarization insensitive and tunable terahertz metamaterial perfect absorber based on the graphene disk and square ribbon," Micro and Nanostructures, Vol. 163, 107153, 2022.
doi:10.1016/j.spmi.2022.107153

24. Wang, B.-X., X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, "Design of a four-band and polarization-insensitive terahertz metamaterial absorber," IEEE Photonics Journal, Vol. 7, No. 1, 1-8, 2014.

25. Han, X., Z. Zhang, and X. Qu, "A novel miniaturized tri-band metamaterial THz absorber with angular and polarization stability," Optik, Vol. 228, 166086, 2021.
doi:10.1016/j.ijleo.2020.166086