1. Yao, Z., Y. E. Wang, S. Keller, et al. "Bulk acoustic wave-mediated multiferroic antennas: Architecture and performance bound," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3335-3344, Aug. 2015.
doi:10.1109/TAP.2015.2431723
2. Nan, T. X., H. Lin, Y. Gao, et al. "Acoustically actuated ultra-compact NEMS magnetoelectric antennas," Nature Communications, Vol. 8, 296, Aug. 22, 2017.
3. Zaeimbashi, M., H. Lin, C. Dong, et al. "NanoNeuroRFID: A wireless implantable device based on magnetoelectric antennas," IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology, Vol. 3, No. 3, 206-215, Sept. 2019.
doi:10.1109/JERM.2019.2903930
4. Zaeimbashi, M., M. Nasrollahpour, A. Khalifa, et al. "Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing," Nature Communications, Vol. 12, No. 1, Article number: 3141, May 25, 2021.
doi:10.1038/s41467-021-23256-z
5. Yu, Z. H., J. C. Chen, F. T. Alrashdan, et al. "MagNI: A magnetoelectrically powered and controlled wireless neurostimulating implant," IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 6, 1241-1252, Dec. 2020.
doi:10.1109/TBCAS.2020.3037862
6. Dong, C. Z., Y. F. He, M. H. Li, et al. "A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 398-402, Mar. 2020.
doi:10.1109/LAWP.2020.2968604
7. Niu, Y. P. and H. Ren, "A miniaturized low frequency (LF) magnetoelectric receiving antenna with an integrated DC magnetic bias," Applied Physics Letters, Vol. 118, No. 26, Jun. 28, 2021.
8. Niu, Y. P. and H. Ren, "Transceiving signals by mechanical resonance: A miniaturized standalone low frequency (LF) magnetoelectric mechanical antenna pair with integrated DC magnetic bias," IEEE Sensors Journal, Vol. 22, No. 14, 14008-14017, Jul. 15, 2022.
doi:10.1109/JSEN.2022.3183012
9. Xu, J. R., C. M. Leung, X. Zhuang, et al. "A low frequency mechanical transmitter based on magnetoelectric heterostructures operated at their resonance frequency," Sensors, Vol. 19, No. 4, 853, Feb. 2, 2019.
doi:10.3390/s19040853
10. Xu, G. K., S. Q. Xiao, Y. Li, et al. "Modeling of electromagnetic radiation-induced from a magnetostrictive/piezoelectric laminated composite," Physics Letters A, Vol. 385, 126959, Jan. 7, 2021.
11. George, R. and T. A. J. Mary, "Review on directional antenna for wireless sensor network applications," IET Communications, Vol. 14, No. 5, 715-722, Mar. 17, 2020.
doi:10.1049/iet-com.2019.0859
12. Bhattacharjee, A., A. Bhawal, A. Karmakar, et al. "Vivaldi antennas: A historical review and current state of art," International Journal of Microwave and Wireless Technologies, Vol. 13, No. 8, 833-850, Oct. 2021.
doi:10.1017/S1759078720001415
13. Mehdipour, A., K. Mohammadpour-Aghdam, and R. Faraji-Dana, "Complete dispersion analysis of Vivaldi antenna for ultra wideband applications," Progress In Electromagnetics Research, Vol. 77, 85-96, 2007.
doi:10.2528/PIER07072904
14. Will-Cole, A. R., A. E. Hassanien, S. D. Calisgan, et al. "Tutorial: Piezoelectric and magnetoelectric N/MEMS-materials, devices, and applications," Journal of Applied Physics, Vol. 131, No. 24, 241101-1-32, Jun. 28, 2022.
15. Tichy, J., J. Erhart, E. Kittinger, and J. Privratska, "Piezoelectric properties," Fundamentals of Piezoelectric Sensorics, 69-100, Springer, 2010.
doi:10.1007/978-3-540-68427-5_5
16. Berlincourt, D. A., "Piezoelectric and piezomagnetic materials and their function in transducers," Physical Acoustics, Vol. 1, 169-270, 1964.
doi:10.1016/B978-1-4832-2857-0.50009-5
17. Li, N., X. Y. Li, B. N. Xu, et al. "Design and optimization of a micron-scale magnetoelectric antenna based on acoustic excitation," Micromachines, Vol. 13, No. 10, Oct. 2022.
18. Lou, J., R. E. Insignares, Z. Cai, et al. "Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films," Applied Physics Letters, Vol. 91, 182504-1-3, Oct. 29, 2007.
19. Zhai, J., Z. Xing, S. Dong, et al. "Magnetoelectric laminate composites: An overview," Journal of the American Ceramic Society, Vol. 91, No. 2, 351-358, Feb. 2008.
doi:10.1111/j.1551-2916.2008.02259.x
20. Zhai, J. Y., S. X. Dong, Z. P. Xing, et al. "Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates," Applied Physics Letters, Vol. 89, No. 8, Aug. 21, 2006.