Vol. 111
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-07-03
Swarm UAV Defeat Modelling through Lifetime Distribution Analysis
By
Progress In Electromagnetics Research Letters, Vol. 111, 71-78, 2023
Abstract
The problem of defeating a swarm of unmanned aerial vehicles (UAVs) is of considerable importance to the modern warfighter. In recent studies high power radio frequency (HPRF) directed energy weapons (DEWs) have been shown to be suitable for this purpose. Hence there is a need to develop mathematical modelling frameworks to quantify HPRF DEW performance, especially when they are operating in a wideband or ultrawideband mode. Consequently this paper introduces a novel mathematical model, based upon a new interpretation of UAV vulnerabilities to HPRF DEW, which permits performance assessment to be undertaken. The key to this is to view each UAV through its vulnerabilities to HPRF DEW energy at given frequencies and analyse its impact on the lifetime of each of the UAVs. This results in the definition of an appropriate stochastic process to count the number of UAVs still active in the swarm over a given time interval. Consequently this permits the determination of minimum HPRF DEW power levels at given frequencies in order to guarantee likelihood of defeat of the swarm before it reaches the HPRF DEW source. Hence the results in this paper will provide a novel framework for determining the specifications of an HPRF DEW's required power distribution over target vulnerabilities to ensure a desired level of system performance.
Citation
Graham V. Weinberg, and Mitchell M. Kracman, "Swarm UAV Defeat Modelling through Lifetime Distribution Analysis," Progress In Electromagnetics Research Letters, Vol. 111, 71-78, 2023.
doi:10.2528/PIERL23022808
References

1. Kumar, A., "Drone proliferation and security threats: A critical analysis," Indian Journal of Asian Affairs, Vol. 33, 43-62, 2020.

2. Wang, J., Y. Liu, and H. Song, "Counter-Unmanned Aircraft System(s) (C-UAS): State of the art challenges and future trends," IEEE Aerospace and Electronic Systems Magazine, Vol. 36, 4-29, 2021.
doi:10.1109/MAES.2020.3015537

3. Lyu, C. and R. Zhan, "Global analysis of the active defense technologies for unmanned aerial vehicle," IEEE Aerospace and Electronic Systems Magazine, Vol. 37, 6-31, 2022.
doi:10.1109/MAES.2021.3115205

4. Graswald, M., R. Gutser, F. Grabner, B. Meyer, C. Winter, and A. Oelerich, "Defeating UAVs through novel HPEM effectors," 31st International Symposium on Ballistics, India, 2019.

5. Giri, D. V., R. Hoad, and F. Sabath, High Power Electromagnetic Effects on Electronic Systems, Artech House, 2020.

6. Lubkowski, G., M. Lanzrath, L. C. Lavau, and M. Suhrke, "Response of the UAV sensor system to HPEM attacks," International Symposium on Electromagnetic Compatibility, EMC Europe, 2020.

7. Lavau, L. C., M. Suhrke, and P. Knott, "Susceptibility of sensors to IEMI attacks," IEEE International Joint EMC/SI/PI and EMC Symposium, 533-537, 2021.
doi:10.1109/EMC/SI/PI/EMCEurope52599.2021.9559197

8. Zhao, M., Y. Chen, X. Zhou, D. Zhang, and Y. Nie, "Investigation on falling and damage mechanisms of UAV illuminated by HPM pulses," IEEE Transactions on Electromagnetic Compatibility, Vol. 64, 1412-1422, 2022.
doi:10.1109/TEMC.2022.3187017

9. Weinberg, G. V., "Quantification of combat team survivability with high power RF directed energy weapons," Progress In Electromagnetics Research M, Vol. 102, 1-11, 2021.
doi:10.2528/PIERM21020406

10. Weinberg, G. V., "Prediction of UAV swarm defeat with high-power radio frequency fields," IEEE Transactions on Electromagnetic Compatibility, Vol. 64, 2157-2162, 2022.
doi:10.1109/TEMC.2022.3193881

11. Giri, D. V. and F. M. Tesche, "High Power Electromagnetic (HPEM) source considerations," IEEE International Symposium on Electromagnetic Compatibility, 1028-1031, 2003.

12. Weinberg, G. V., "Performance prediction of directed energy weapons," Progress In Electromagnetics Research M, Vol. 108, 79-88, 2022.
doi:10.2528/PIERM21111201

13. Torrero, L., P. Mollo, A. Molino, and A. Perotti, "RF imunity testing of an unmanned aerial vehcile platform under strong EM field conditions," 2013 7th European Conference on Antennas and Propogation (EuCAP), 263-267, 2013.

14. Lavau, L. C., M. Suhrke, and P. Knott, "Impact of IEMI pulses on a barometric sensor," 2022 International Symposium on Electromagnetic Compatibility --- EMC Europe, 290-294, 2022.
doi:10.1109/EMCEurope51680.2022.9900930

15. Kim, S. G., E. Lee, I. P. Hong, and J. G. Yook, "Review of intentional electromagnetic interference on UAV sensor modules and experimental study," Sensors, Vol. 22, No. 6, 2384, 2022.
doi:10.3390/s22062384