Vol. 111
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-07-03
Beam-Pattern Control via Thinned Elements Strategy in Linear and Planar Phased Arrays
By
Progress In Electromagnetics Research Letters, Vol. 111, 79-84, 2023
Abstract
Reconfigurable antenna arrays play a major role in the current and future wireless communication systems due to their multifunctional capabilities and many other advantages. Conventionally, the array pattern reconfigurations were usually achieved by controlling the excitation amplitudes and phases of all or most of the array elements which are generally costly and complex methods. In this paper, a simple method for controlling the reconfigurability of beam-patterns of the linear and planar arrays is presented. It can be easily switched between narrow and wide beams using thinned-elements strategy. First, the array elements are divided into three groups based on their locations namely central, middle, and outer elements. Their amplitude weights are chosen to be unity, adaptive, and zero respectively. To add some desired constraints on the array beam-patterns such as limited sidelobe level and specified nulls placement, the excitation weights of the middle elements are optimized such that an abrupt change in the array taper is avoided. This also avoids an undesired change in the sidelobe pattern. A genetic algorithm is used to perform such optimization so that the produced beam-patterns are best matched to the desired ones. Moreover, the size of the thinned region controls the resulting beam width.
Citation
Jafar Ramadhan Mohammed, "Beam-Pattern Control via Thinned Elements Strategy in Linear and Planar Phased Arrays," Progress In Electromagnetics Research Letters, Vol. 111, 79-84, 2023.
doi:10.2528/PIERL23022403
References

1. Fernandez-Delgado, M., J. Rodriguez-Gonzalez, R. Iglesias, S. Barro, and F. Ares-Pena, "Fast array thinning using global optimization methods," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2259-2271, 2010.
doi:10.1163/156939310793699136

2. Oliveri, G., M. Donelli, and A. Massa, "Linear array thinning exploiting almost difference sets," IEEE Transactions on Antennas and Propagation, Vol. 57, 3800-3812, 2009.
doi:10.1109/TAP.2009.2027243

3. Morabito, A. F., R. Palmeri, V. A. Morabito, A. R. Laganà, and T. Isernia, "Single-surface phaseless characterization of antennas via hierarchically ordered optimizations," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 461-474, Jan. 2019, doi: 10.1109/TAP.2018.2877270.
doi:10.1109/TAP.2018.2877270

4. Mohammed, J. R., "Optimal null steering method in uniformly excited equally spaced linear array by optimizing two edge elements," Electronics Letters, Vol. 53, No. 13, 835-837, Jun. 2017.
doi:10.1049/el.2017.1405

5. Sayidmarie, K. and J. R. Mohammed, "Performance of a wide angle and wide band nulling method for phased arrays," Progress In Electromagnetics Research M, Vol. 33, 239-249, 2013.
doi:10.2528/PIERM13100603

6. Mohammed, J. R., "Synthesizing sum and difference patterns with low complexity feeding network by sharing element excitations," International Journal of Antennas and Propagation, Vol. 2017, 7 pages, Article ID 2563901, 2017.

7. Mohammed, J. R., "Thinning a subset of selected elements for null steering using binary genetic algorithm," Progress In Electromagnetics Research M, Vol. 67, 147-157, 2018.
doi:10.2528/PIERM18021604

8. Mohammed, J. R., "A method for thinning useless elements in the planar antenna arrays," Progress In Electromagnetics Research Letters, Vol. 97, 105-113, 2021.
doi:10.2528/PIERL21022104

9. Balanis, C. A., Antenna Theory, Analysis and Design, 4th Ed., Wiley, 2016.