1. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098
2. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proc. IEEE, Vol. 102, No. 3, 366-385, Mar. 2014.
doi:10.1109/JPROC.2014.2299397
3. Rappaport, T. S., Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, Vol. 7, 78729-78757, 2019.
doi:10.1109/ACCESS.2019.2921522
4. MacCartney, G. R., S. Deng, S. Sun, and T. S. Rappaport, "Millimeter-wave human blockage at 73 GHz with a simple double knife-edge diffraction model and extension for directional antennas," 2016 IEEE 84th Vehi. Tech. Conf. (VTC-Fall), 1-6, Montreal, QC, Canada, 2016.
5. Sun, S., T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, "MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?," IEEE Commun. Mag., Vol. 52, No. 12, 110-121, Dec. 2014.
doi:10.1109/MCOM.2014.6979962
6. Sun, S., G. R. MacCartney, M. K. Samimi, and T. S. Rappaport, "Synthesizing omnidirectional antenna patterns, received power and path loss from directional antennas for 5G millimeter-wave communications," Proc. IEEE Global Commun. Conf. (GLOBECOM), 3948-3953, San Diego, CA, USA, Dec. 2015.
7. Du, X., K. Saito, J.-I. Takada, and P. Hanpinitsak, "A novel mirror Kirchhoff approximation method for predicting the shadowing effect by a metal cuboid," Progress In Electromagnetics Research M, Vol. 104, 199-212, 2021.
doi:10.2528/PIERM21041306
8. Du, X. and J. Takada, "Mirror Kirchhoff approximation for predicting shadowing effect by a PEC convex cylinder," 2021 Appl. Computa. Electromagn. Soci., Hamilton, Canada, Aug. 2021.
9. Du, X. and J. Takada, "Low computational cost mirror Kirchhoff approximation for predicting shadowing effect," IEEE Access, Vol. 10, 23829-23841, 2022.
doi:10.1109/ACCESS.2022.3155547
10. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, Nov. 1974.
doi:10.1109/PROC.1974.9651
11. Andersen, J. B., "UTD multiple-edge transition zone diffraction," IEEE Trans. Antennas Propag., Vol. 45, No. 7, 1093-1097, Jul. 1997.
doi:10.1109/8.596898
12. Pathak, P. H., W. Burnside, and R. Marhefka, "A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 26, No. 5, 631-642, Sep. 1980.
doi:10.1109/TAP.1980.1142396
13. Pathak, P. H., "An asymptotic analysis of the scattering of plane waves by a smooth convex cylinder," Radio Science, Vol. 14, No. 3, 419-435, Jun. 1979.
doi:10.1029/RS014i003p00419
14. Pearson, L., "A scheme for automatic computation of Fock-type integrals," IEEE Trans. Antennas Propag., Vol. 35, No. 10, 1111-1118, Oct. 1987.
doi:10.1109/TAP.1987.1143985
15. Qi, Y., B. Currie, W. Wang, P. Y. Chung, C. Wu, and J. Litva, "Measurement and simulation of radio wave propagation in two indoor environments," Proc. 6th Inter. Symp. Pers., 1171-1174, Toronto, Ontario, Canada, 1995.
16. Jacob, M., S. Priebe, A. Maltsev, A. Lomayev, V. Erceg, and T. Kurner, "A ray tracing based stochastic human blockage model for the IEEE 802.11ad 60 GHz channel model," Proc. 5th Euro. Conf. Antennas Propag. (EUCAP), 3084-3088, Rome, Italy, 2011.
17. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.
18. Villanese, F., N. E. Evans, and W. G. Scanlon, "Pedestrian-induced fading for indoor channels at 2.45, 5.7 and 62 GHz," 2000 IEEE 52th Vehi. Tech. Conf. (VTC-Fall), 43-48, Boston, MA, USA, 2000.
19. Fakharzadeh, M., J. Ahmadi-Shokouh, B. Biglarbegian, M. R. Nezhad-Ahmadi, and S. Safavi-Naeini, "The effect of human body on indoor radio wave propagation at 57-64 GHz," 2009 IEEE Antennas Propag. Soc. Inter. Symp., 1-4, North Charleston, SC, USA, 2009.
20. Duarte Carvalho de Queiroz, A. and L. C. Trintinália, "An analysis of human body shadowing models for ray-tracing radio channel characterization," 2015 SBMO/IEEE MTT-S Inter. Microwave Optoelectron. Conf. (IMOC), 1-5, Porto de Galinhas, Brazil, 2015.
21. Tang, C., "Back scattering from dielectric-coated infinite cylindrical obstacles," J. Appl. Phys., Vol. 28, No. 5, 628-633, 1957.
doi:10.1063/1.1722815
22. Jacob, M., S. Priebe, T. Kurner, M. Peter, M. Wisotzki, R. Felbecker, and W. Keusgen, "Fundamental analyses of 60 GHz human blockage," Proc. 7th Euro. Conf. Antennas Propag. (EuCAP), 117-121, Gothenburg, Sweden, 2013.
23. Wu, T., T. S. Rappaport, and C. M. Collins, "The human body and millimeter-wave wireless communication systems: Interactions and implications," 2015 IEEE Inter. Conf. Communi. (ICC), London, UK, 2015.
24. Gandhi, O. P. and A. Riazi, "Absorption of millimeter waves by human beings and its biological implications," IEEE Trans. Microw. Theory Tech., Vol. 34, No. 2, 228-235, Feb. 1986.
doi:10.1109/TMTT.1986.1133316
25. Southwell, W. H., "Validity of the Fresnel approximation in the near field," J. Opt. Soc., Vol. 71, No. 1, 7-14, 1981.
doi:10.1364/JOSA.71.000007
26. Haykin, S. and M. Moher, Modern Wireless Communications, 24-29, Library of Congress Cateloging-in-Publication, 2003.