Vol. 116
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-04-05
A Compact Reconfigurable Multi-Frequency Patch Antenna for LoRa IoT Applications
By
Progress In Electromagnetics Research M, Vol. 116, 77-89, 2023
Abstract
In this study, a compact, reconfigurable, and high-efficiency Long Range (LoRa) patch antenna, which is novel, is presented for Internet of Things (IoT) applications. The antenna is designed to operate at the three major frequencies used for LoRa communication, namely 915 MHz, 868 MHz, and 433 MHz, which are widely employed for global LoRa connectivity. The compact size and impedance matching of the antenna are achieved through the use of meandered radiating patches, a partial ground plane, and a ground plane stub. The antenna is prototyped on a commercially available and cost-effective FR-4 material and measures 80 mm x 50 mm x 1.6 mm (0.12λ x 0.07λ at the lowest resonant frequency), which is smaller than the size of a standard credit card. The antenna utilizes three RF PIN diodes (SW1, SW2, and SW3) for frequency reconfiguration, which are characterized by low insertion loss and fast switching time. The RLC equivalent circuit of the antenna was validated through simulations and measurements, yielding the peak gain and radiation efficiency of 2.1 dBi and >90%, respectively. These results prove that the antenna is a promising solution for LoRa IoT applications in terms of size, cost, and performance, filling a gap in the existing literature of LoRa MPAs that are typically large, non-reconfigurable, low-gain, and single-band.
Citation
Muhammad Sani Yahya, Socheatra Soeung, Francis Emmanuel Chinda, Sharul Kamal Bin Abd Rahim, Umar Musa, Nursyarizal B. M. Nor, and Sovuthy Cheab, "A Compact Reconfigurable Multi-Frequency Patch Antenna for LoRa IoT Applications," Progress In Electromagnetics Research M, Vol. 116, 77-89, 2023.
doi:10.2528/PIERM23021804
References

1. Ayoub Kamal, M., M. M. Alam, A. A. Sajak, and M. Mohd Su'ud, "Requirements, deployments, and challenges of LoRa technology: A survey," Comput. Intell. Neurosci., 2023.

2. Edward, P., M. El-Aasser, M. Ashour, and T. Elshabrawy, "Interleaved chirp spreading LoRa as a parallel network to enhance LoRa capacity," IEEE Internet Things J., Vol. 8, No. 5, 2020.
doi:10.1109/JIOT.2020.3027100

3. Edward, P., S. Elzeiny, M. Ashour, and T. Elshabrawy, "On the coexistence of LoRa-and interleaved chirp spreading LoRa-based modulations," 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2019.

4. Opipah, S., H. Qodim, D. Miharja, E. A. Z. Hamidi, and T. Juhana, "Prototype design of smart home system base on LoRa," 2020 6th International Conference on Wireless and Telematics (ICWT), 2020.

5. El-Aasser, M., A. Gasser, M. Ashour, and T. Elshabrawy, "Performance analysis comparison between LoRA and frequency hopping-based LPWAN," 2019 IEEE Global Conference on Internet of Things (GCIoT), 2019.

6. Munirathinam, S., "Industry 4.0: Industrial Internet of Things (IIOT)," Advance in Computers, Vol. 117, No. 1, 129-164, 2020.
doi:10.1016/bs.adcom.2019.10.010

7. Swamy, S. N. and S. R. Kota, "An empirical study on system level aspects of Internet of Things (IoT)," IEEE Access, Vol. 8, 188082-188134, 2020.
doi:10.1109/ACCESS.2020.3029847

8. Chaudhary, S., R. Johari, R. Bhatia, K. Gupta, and Bhatnagar, "CRAIoT: Concept, review and application(s) of IoT," 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), 2019.

9. Masuk, A., O. M. Kende, A. Husam, and I. Balajti, "Cyber-physical system aspects of microstrip patch antenna of radar sensor application," 2022 23rd International Radar Symposium (IRS), 2022.

10. Moradi, A. and T. B. A. Rahman, "Broadband modified rectangular microstrip patch antenna using stepped cut at four corners method," Progress In Electromagnetics Research, Vol. 137, 599-619, 2013.

11. Dala, A. and T. Arslan, "Design, implementation, and measurement procedure of underwater and water surface antenna for Lora communication," Sensors, Vol. 21, No. 4, 1337, 2021.
doi:10.3390/s21041337

12. Zhang, Q. and Y. Gao, "Embedded antenna design on LoRa radio for IoT applications," 12th European Conference on Antennas and Propagation, London, UK, Apr. 2018.

13. Boursianis, A. D., M. S. Papadopoulou, J. Pierezan, V. C. Mariani, L. S. Coelho, P. Sarigiannidis, S. Koulouridis, and S. K. Goudos, "Multiband patch antenna design using nature-inspired optimization method," IEEE Open Journal of Antennas and Propagation, 151-162, 2020.

14. Krishna, M. V. and G. S. N. Raju, "Triangle shaped antenna design for IoT-based Lorawan applications," SAMRIDDHI: A Journal of Physical Sciences, Engineering and Technology, Vol. 13, No. 1, 8-11, 2021.
doi:10.18090/samriddhi.v13i01.3

15. Musa, U., S. M. Shah, H. A. Majid, Z. Z. Abidin, M. S. Yahya, S. Babani, and Z. Yunusa, "Recent advancement of wearable reconfigurable antenna technologies: A review," IEEE Access, Vol. 10, 121831-121863, 2022.
doi:10.1109/ACCESS.2022.3222782

16. Pourziad, A., S. Nikmehr, and H. Veladi, "A novel multi-state integrated RF MEMS switch for reconfigurable antennas applications," Progress In Electromagnetics Research, Vol. 139, 389-406, 2013.
doi:10.2528/PIER13012303

17. Ullah, S., S. Ahmad, and B. A. Khan, "A multi-band switchable antenna for Wi-Fi, 3G advanced, WiMAX, and WLAN wireless applications," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 8, 991-997, 2018.
doi:10.1017/S1759078718000776

18. Awaleh, A. A., S. H. Dahlan, and M. Z. M. Jenu, "Equivalent electrical lumped component modeling of e-shaped patch flat lens antenna unit cell," 2014 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 2014.