Vol. 110
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-04-13
Design of Quasi-Equal Inductor Filter Based on Multilayer Substrate
By
Progress In Electromagnetics Research Letters, Vol. 110, 55-62, 2023
Abstract
A quasi-equal inductor filter and its corresponding multilayer realization are proposed in this paper. The circuit transformation is performed using the Norton transformation. In the proposed filter, ratio between the largest and smallest component values is reduced, which makes the design of components much easier. Meanwhile, by carefully selecting the transformation ratio, all grounding inductors are equal in value. As a result, the multilayer filter design is simplified because only one instance of grounding inductors needs to be designed instead of three. An experimental prototype is fabricated and measured. The measurement result agrees well with the desired one, which shows the effectiveness of proposed filter.
Citation
Ke Cao, and Kun Pan, "Design of Quasi-Equal Inductor Filter Based on Multilayer Substrate," Progress In Electromagnetics Research Letters, Vol. 110, 55-62, 2023.
doi:10.2528/PIERL23021501
References

1. Zhu, H., X. Ning, Z. Huang, and X. Wu, "An ultra-compact on-chip reconfigurable bandpass filter with semi-lumped topology by using GaAs pHEMT technology," IEEE Access, Vol. 8, 31606-31613, 2020.
doi:10.1109/ACCESS.2020.2972932

2. Neculoiu, D., A. Bunea, A. M. Dinescu, and L. A. Farhat, "Band pass filters based on GaN/Si lumped-element SAW resonators operating at frequencies above 5 GHz," IEEE Access, Vol. 6, 47587-47599, 2018.
doi:10.1109/ACCESS.2018.2867456

3. Zhu, L., "Narrowband LTCC filter with length-reduced end-coupled resonators," Progress In Electromagnetics Research Letters, Vol. 93, 13-19, 2020.
doi:10.2528/PIERL20061801

4. Xie, N., H. Tie, Q. Ma, and B. Zhou, "Spur-less interdigital metal-insulator-metal capacitor," Progress In Electromagnetics Research Letters, Vol. 101, 49-54, 2021.
doi:10.2528/PIERL21100101

5. Kewei, Q., "Miniaturised LTCC diplexer with low insertion loss for LTE application," Electronics Letters, Vol. 56, No. 1, 39-41, 2020.
doi:10.1049/el.2019.3149

6. Borah, D. and T. S. Kalkur, "Temperature effect on a lumped element balanced dual-band band-stop filter," Progress In Electromagnetics Research M, Vol. 97, 107-117, 2020.
doi:10.2528/PIERM20062907

7. Zverev, A. I., Handbook of Filter Synthesis, Wiley, 1967.

8. Wu, D., Y. C. Li, Q. Xue, and J. Mou, "LTCC bandstop filters with controllable bandwidths using transmission zeros pair," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 6, 1034-1038, 2019.
doi:10.1109/TCSII.2019.2929332

9. Gamez-Machado, A., D. Valdes-Martin, A. Asensio-Lopez, and J. Gismero-Menoyo, "Microstrip-to-stripline planar transitions on LTCC," 2011 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Integration Technologies, 1-4, Sitges, Spain, 2011.

10. Brzezina, G., L. Roy, and L. MacEachern, "Design enhancement of miniature lumped-element LTCC bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 4, 815-823, 2009.
doi:10.1109/TMTT.2009.2015035

11. Yang, L., L. Zhu, R. Zhang, J. Wang, W. Choi, K. Tam, and R. Gomez-Garcia, "Novel multilayered ultra-broadband bandpass filters on high-impedance slotline resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 1, 129-139, 2019.
doi:10.1109/TMTT.2018.2873330

12. Sun, F., H. Zhu, X. Zhu, Y. Yang, and R. Gomez-Garcia, "Design of on-chip millimeter-wave bandpass filters using multilayer patterned-ground element in 0.13-μm (Bi)-CMOS technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 12, 5159-5170, 2019.
doi:10.1109/TMTT.2019.2949293