Vol. 117
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-06-02
Analytical Modeling of Metamaterial Absorbers with Low Cross-Polarized Reflected Field Under Oblique Incidence Using Equivalent Medium Approximation
By
Progress In Electromagnetics Research M, Vol. 117, 83-93, 2023
Abstract
In this paper, we propose a new physical model to accurately estimate the absorption characteristics in Metamaterial Perfect Absorbers (MPAs). The proposed model, relying on the reflection and refraction theory of microwaves, explains the physical mechanism of absorption and how unit-cell constitutive parameters can contribute to control the absorption characteristics. By considering Floquet modes (TE and TM) as two incident cross-polarized waves, analytical expressions have been established to estimate the absorption at normal and oblique incidences from the extracted constitutive parameters of the unit-cell. Analytical predictions are in excellent agreement with numerical results, proving the validity of our model. Furthermore, it can give an idea behind the absorption characteristics of MPA unit-cells without passing through full-wave simulation which usually takes time. Compared to previous works reported in the literature, the proposed method is efficient and does not require time-consuming tests and processing steps. Finally, analytical findings in this work hold for the general shapes of MPA resonators.
Citation
Said Choukri, Hakim Takhedmit, Otman El Mrabet, and Laurent Cirio, "Analytical Modeling of Metamaterial Absorbers with Low Cross-Polarized Reflected Field Under Oblique Incidence Using Equivalent Medium Approximation," Progress In Electromagnetics Research M, Vol. 117, 83-93, 2023.
doi:10.2528/PIERM23020811
References

1. Mishra, R., R. Panwar, and D. Singh, "Equivalent circuit model for the design of frequency-selective, terahertz-band, graphene-based metamaterial absorbers," IEEE Magnetics Letters, Vol. 9, 1-5, 2018, Art no. 3707205, doi: 10.1109/LMAG.2018.2878946.
doi:10.1109/LMAG.2018.2878946

2. Zhou, Z., K. Chen, B. Zhu, J. Zhao, Y. Feng, and Y. Li, "Ultra-wideband microwave absorption by design and optimization of metasurface salisbury screen," IEEE Access, Vol. 6, 26843-26853, 2018, doi: 10.1109/ACCESS.2018.2835815.
doi:10.1109/ACCESS.2018.2835815

3. Liang, M. and D. Hao-Chuan, "The absorbing characteristics of plasma-filed double-layer Jaumann screen," 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium, 1-2, 2021, doi: 10.23919/ACES-China52398.2021.9581551.

4. Hakim, M. L., T. Alam, Md. S. Islam, et al. "Wide-oblique-incident-angle stable polarization-insensitive ultra-wideband metamaterial perfect absorber for visible optical wavelength applications," Materials, Vol. 15, 1996-1944, 2022, doi: 10.3390/ma15062201.
doi:10.3390/ma15061996

5. Dinh, M., N. Ha-Van, N. T. Tung, and M. Thuy Le, "Dual-polarized wide-angle energy harvester for self-powered IoT devices," IEEE Access, Vol. 9, 103376-103384, 2021, doi: 10.1109/ACCESS.2021.3098983.
doi:10.1109/ACCESS.2021.3098983

6. Ashoor, A. Z., T. S. Almoneef, and O. M. Ramahi, "A planar dipole array surface for electromagnetic energy harvesting and wireless power transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 3, 1553-1560, Mar. 2018, doi: 10.1109/TMTT.2017.2750163.
doi:10.1109/TMTT.2017.2750163

7. Zhang, Z., Y. Zhang, T. Wu, et al. "Broadband RCS reduction by a quaternionic metasurface," Materials MDPI, Vol. 14, 2787, 2021.
doi:10.3390/ma14112787

8. Mohanty, A., O. P. Acharya, B. Appasani, S. K. Mohapatra, and M. S. Khan, "Design of a novel terahertz metamaterial absorber for sensing applications," IEEE Sensors Journal, Vol. 21, No. 20, 22688-22694, Oct. 15, 2021, doi: 10.1109/JSEN.2021.3109158.
doi:10.1109/JSEN.2021.3109158

9. Garg, P. and P. Jain, "Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5 GHz WiMAX band," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 4, 675-679, Apr. 2020, doi: 10.1109/TCSII.2019.2925148.
doi:10.1109/TCSII.2019.2925148

10. Chen, K., X. Zhang, S. Li, et al. "Switchable 3D printed microwave metamaterial absorbers by mechanical rotation control," J. of Physics D: Applied Physics, Vol. 53, No. 30, 305105, May 2020.
doi:10.1088/1361-6463/ab85e8

11. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181-7188, 2008.
doi:10.1364/OE.16.007181

12. Wen, Q.-Y., Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, "Transmission line model and fields analysis of metamaterial absorber in the terahertz band," Opt. Express, Vol. 17, 20256-20265, 2009.
doi:10.1364/OE.17.020256

13. Pang, Y., H. Cheng, Y. Zhou, and J. Wang, "Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach," Journal of Applied Physics, Vol. 113, 114902, 2013.
doi:10.1063/1.4795277

14. Wanghuang, T., W. Chen, Y. Huanga, and G. Wen, "Analysis of metamaterial absorber in normal and oblique incidence by using interference theory," AIP Advances, Vol. 3, 102118, 2013, https://doi.org/10.1063/1.4826522.
doi:10.1063/1.4826522

15. Chen, H.-T., "Interference theory of metamaterial perfect absorbers," Opt. Express, Vol. 20, 7165-7172, 2012.
doi:10.1364/OE.20.007165

16. Shaltout, A., V. Shalaev, and A. Kildishev, "Homogenization of bi-anisotropic metasurfaces," Opt. Express, Vol. 21, 21941-21950, 2013.
doi:10.1364/OE.21.021941

17. De Araujo, J. B. O., G. L. Siqueira, E. Kemptner, M. Weber, C. Junqueira, and M. M. Mosso, "An ultrathin and ultrawideband metamaterial absorber and an equivalent-circuit parameter retrieval method," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3739-3746, May 2020, doi: 10.1109/TAP.2020.2963900.
doi:10.1109/TAP.2020.2963900

18. Choukri, S., H. Takhedmit, O. El Mrabet, and L. Cirio, "Energy harvesting using loaded metamaterial absorber unit-cell with polarization independent capability," 10th National Days on Energy Harvesting and Storage (JNRSE), Grenoble, France, 2021.