Vol. 116
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-05-09
Design and Verification of Noninvasive Wearable Continuous Blood Glucose Monitoring System for Smartwatches
By
Progress In Electromagnetics Research M, Vol. 116, 155-164, 2023
Abstract
In this paper, we propose a noninvasive blood glucose monitoring system that can be easily integrated into smartwatches. This system makes use of dielectric properties of blood-flow in human blood vessels as well as frequency dependency of blood glucose. To prove the proposed design principle, authors have verified the system working with vector network analyser and a directional coupler. The entire system design is explained in this paper. At the time of final system integration, the vector network analyser and directional coupler can be replaced with other on-chip sensors. Authors have also compared the obtained results with finger pricking based blood-glucose measurement. The results agree and have been tabulated. Clarke error grid was also used to evaluate proposed system accuracy.
Citation
Pratik J. Mhatre, and Manjusha Joshi, "Design and Verification of Noninvasive Wearable Continuous Blood Glucose Monitoring System for Smartwatches," Progress In Electromagnetics Research M, Vol. 116, 155-164, 2023.
doi:10.2528/PIERM23020704
References

1. "About diabetes,", Int. Diabetes Federation, published 2019, last updated Feb. 2020. Accessed: Sep. 17, 2020. [Online]. Available: https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html.
doi:10.14302/issn.2374-9431.jbd-15-647

2. Nawaz, A., P. Ohlckers, S. Slid, M. Jacobsen, and M. N. Akram, "Review: Non-invasive continuous blood glucose measurement techniques," J. Bioinf. Diabetes, Vol. 1, No. 3, 1-27, Jul. 2016.
doi:10.4093/dmj.2019.0121

3. Cappon, G., M. Vettoretti, G. Sparacino, and A. Facchinetti, "Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications," Diabetes Metabolism J., Vol. 43, No. 4, 383-397, Aug. 2019.

4. Bruen, D., C. Delaney, L. Florea, and D. Diamond, "Glucose sensing for diabetes monitoring: Recent developments," Sensors, Vol. 17, No. 8, Art. no. 1866, Aug. 2017.
doi:10.1021/ac60119a030

5. Comer, J. P., "Semiquantitative specific test paper for glucose in urine," Analytical Chemistry, Vol. 28, No. 11, 1748-1750, Nov. 1956.
doi:10.1016/j.bios.2010.12.042

6. Yao, H., A. J. Shum, M. Cowan, I. Lähdesmäki, and B. A. Parviz, "A contact lens with embedded sensor for monitoring tear glucose level," Biosensors Bioelectronics, Vol. 26, No. 7, 3290-3296, Mar. 2011.
doi:10.3390/bioengineering4040082

7. Todd, C., P. Salvetti, K. Naylor, and M. Albatat, "Towards non-invasive extraction and determination of blood glucose levels," Bioengineering, Vol. 4, No. 4, 82-92, Sep. 2017.
doi:10.1373/clinchem.2004.032862

8. Siegel, A., R. H. Guy, and M. B. Delgado-Charro, "Noninvasive glucose monitoring by reverse iontophoresis in vivo: Application of the internal standard concept," Clin. Chemistry, Vol. 50, No. 8, 1383-1390, Aug. 2004.
doi:10.1038/s41565-018-0112-4

9. Lipani, L., B. G. R. Dupont, F. Doungmene, et al. "Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform," Nature Nanotechnol., Vol. 13, No. 6, 504-511, Apr. 2018.
doi:10.1016/j.bios.2009.02.001

10. Caduff, A., M. S. Talary, M. Mueller, et al. "Non-invasive glucose monitoring in patients with Type 1 diabetes: A multisensor system combining sensors for dielectric and optical characterisation of skin," Biosensors Bioelectronics, Vol. 24, No. 9, 2778-2784, May 2009.
doi:10.1364/BOE.9.000289

11. Kasahara, R., S. Kino, S. Soyama, and Y. Matsuura, "Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers," Biomed. Opt. Express, Vol. 9, No. 1, 289-302, Jan. 2018.
doi:10.1038/73213

12. Kost, J., M. Pishko, R. A. Gabbay, R. Langer, and S. Mitragotri, "Transdermal monitoring of glucose and other analytes using ultrasound," Nature Med., Vol. 6, No. 3, 347-350, Mar. 2000.

13. Vashist, S. K., "Non-invasive glucose monitoring technology in diabetes management: A review," Analytica Chimica Acta, Vol. 750, 16-27, Oct. 2012.
doi:10.1038/s41598-017-06926-1

14. Saha, S., H. Cano-Garcia, I. Sotiriou, O. Lipscombe, I. Gouzouasis, M. Koutsoupidou, G. Palikaras, R. Mackenzie, T. Reeve, P. Kosmas, and E. Kallos, "A glucose sensing system based on transmission measurements at millimetre waves using micro strip patch antennas," Sci. Rep., Vol. 7, 6855, 2017.

15. Choi, H., S. Luzio, J. Beutler, and A. Porch, "Microwave noninvasive blood glucose monitoring sensor: Human clinical trial results," Proceedings of the 2017 IEEE MTT-S International Microwave Symposium, IEEE, 2017.
doi:10.1038/scientificamerican1217-28

16. DiChristina, M. and B. S. Meyerson, "Top 10 emerging technologies of 2017," Sci. Am., Vol. 317, 28-39, 2017.
doi:10.1007/s13300-014-0092-9

17. Overland, J., J. Abousleiman, A. Chronopoulos, et al. "Improving self-monitoring of blood glucose among adults with Type 1 diabetes: Results of the mobileTM study," Diabetes Ther., Vol. 5, 557-565, 2014.
doi:10.1089/dia.2005.7.612

18. Wagner, J., C. Malchoff, and G. Abbott, "Invasiveness as a barrier to self-monitoring of blood glucose in diabetes," Diabetes Technol. Ther., Vol. 7, 612-619, 2005.

19. Mhatre, P. J. and M. Joshi, "Human body model with blood flow properties for non-invasive blood glucose measurement," Biomedical Signal Processing and Control, Elsevier, 2022.

20. Mhatre, P. J. and M. Joshi, "Electrically small wearable tunable antenna that fits into smartwatch dial," 8th International Conference for Convergence in Technology (I2CT), Scopus Indexed IEEE Conference (H Indexing 8), IEEE, Pune, India, 2023.
doi:10.1126/sciadv.aba5320

21. Hanna, J., M. Bteich, and Y. Tawk, "Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy," Science Advances, Vol. 6, No. 24, 2020.
doi:10.1063/5.0086935

22. Stuart, T., J. Hanna, and P. Gutruf, "Wearable devices for continuous monitoring of biosignals: Challenges and opportunities," APL Bioengineering, Vol. 6, No. 2, 021502, 2022.

23. Hanna, J. and J. Constantine, "A slot antenna for non-invasive detection of blood constituents concentrations," International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2019.

24. Choi, H., S. Luzio, J. Beutler, and A. Porch, "Microwave noninvasive blood glucose monitoring sensor: Human clinical trial results," IEEE MTT-S International Microwave Symposium (IMS), 2017.
doi:10.1109/TMTT.2015.2472019

25. Choi, H., S. Luzio, J. Beutler, and A. Porch, "Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 10, 3016-3025, Oct. 2015.