Vol. 117
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-05-16
Phase Gradient Metasurface Assisted Wideband Circularly Polarized Monopole Antenna
By
Progress In Electromagnetics Research M, Vol. 117, 13-23, 2023
Abstract
An asymmetric coplanar waveguide (CPW) fed wideband circularly polarized monopole antenna with a slot structure is proposed in this article. Phase gradient metasurface (PGM) is placed beneath the monopole to improve the gain. Circular polarization (CP) is achieved over wide bandwidth by combining the monopole and slot modes. The asymmetric CPW-fed monopole antenna provides CP at lower frequencies, and slot mode provides CP at higher frequencies. The asymmetric ground plane in the monopole and asymmetric strips in the slot are combined to produce wide axial ratio bandwidth. The proposed design's detailed construction and operation are discussed with experimental validation. The proposed wideband CP antenna provides an impedance bandwidth of 95.46% and axial ratio bandwidth of 67.61%. The peak gain of 5.2 dBic is obtained at 2.35 GHz with 2 dB variation over operating bandwidth. The obtained radiation patterns provide good broadside radiation with better cross-polarization levels than co-polarization.
Citation
Puneeth Kumar Tharehalli Rajanna, Krishnamoorthy Kandasamy, and Pratik Mevada, "Phase Gradient Metasurface Assisted Wideband Circularly Polarized Monopole Antenna," Progress In Electromagnetics Research M, Vol. 117, 13-23, 2023.
doi:10.2528/PIERM23020701
References

1. Gao, S. S., Q. Luo, and F. Zhu, Circularly Polarized Antennas, Wiley, IEEE Press, Nov. 2013.

2. Samsuzzaman, M., M. T. Islam, and M. J. Singh, "A compact printed monopole antenna with wideband circular polarization," IEEE Access, Vol. 6, 54713-54725, 2018, doi: 10.1109/ACCESS.2018.2871818.
doi:10.1109/ACCESS.2018.2871818

3. Wang, L. and Y.-F. En, "A wideband circularly polarized microstrip antenna with multiple modes," IEEE Open Journal of Antennas and Propagation, Vol. 1, 413-418, 2020, doi: 10.1109/OJAP.2020.3009884.
doi:10.1109/OJAP.2020.3009884

4. Ullah, U. and S. Koziel, "A broadband circularly polarized wide-slot antenna with a miniaturized footprint," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2454-2458, Dec. 2018, doi: 10.1109/LAWP.2018.2877800.
doi:10.1109/LAWP.2018.2877800

5. Birwal, A., S. Singh, B. Kanaujia, and S. Kumar, "Broadband CPW-fed circularly polarized antenna for IoT-based navigation system," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 8, 835-843, 2019, doi: 10.1017/S1759078719000461.
doi:10.1017/S1759078719000461

6. Xu, R., J.-Y. Li, and J. Liu, "A design of broadband circularly polarized C-shaped slot antenna with sword-shaped radiator and its array for L/S-band applications," IEEE Access, Vol. 6, 5891-5896, 2018, doi: 10.1109/ACCESS.2017.2788008.
doi:10.1109/ACCESS.2017.2788008

7. Liang, C.-F., Y.-P. Lyu, D. Chen, W. Zhang, and C.-H. Cheng, "A low-profile and wideband circularly polarized patch antenna based on TM11 and TM21," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 4439-4446, Aug. 2021, doi: 10.1109/TAP.2020.3049007.
doi:10.1109/TAP.2020.3049007

8. Saraswat, K., T. Kumar, and A. Harish, "A corrugated G-shaped grounded ring slot antenna for wideband circular polarization," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 5, 431-436, 2020, doi: 10.1017/S1759078719001624.
doi:10.1017/S1759078719001624

9. Ullah, U. and S. Koziel, "A novel coplanar-strip-based excitation technique for design of broadband circularly polarization antennas with wide 3 dB axial ratio beamwidth," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4224-4229, Jun. 2019, doi: 10.1109/TAP.2019.2908114.
doi:10.1109/TAP.2019.2908114

10. Xu, R., J.-Y. Li, J. Liu, S.-G. Zhou, and K. Wei, "A simple design of compact dual-wideband square slot antenna with dual-sense circularly polarized radiation for WLAN/Wi-Fi communications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4884-4889, Sept. 2018, doi: 10.1109/TAP.2018.2851671.
doi:10.1109/TAP.2018.2851671

11. Mcpherson, T. J., Z. Iqbal, and S. Lim, "A wideband, circularly polarized, directive antenna with a circular reflector," IEEE Access, Vol. 7, 177703-177712, 2019, doi: 10.1109/ACCESS.2019.2958528.
doi:10.1109/ACCESS.2019.2958528

12. Hu, W., C. Li, L. Wen, et al. "Wideband circularly polarized microstrip patch antenna with multimode resonance," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 4, 533-537, Apr. 2021, doi: 10.1109/LAWP.2021.3056404.
doi:10.1109/LAWP.2021.3056404

13. Yang, Z., L. Zhu, and S. Xiao, "An implantable wideband circularly polarized microstrip patch antenna via two pairs of degenerate modes," IEEE Access, Vol. 7, 4239-4247, 2019, doi: 10.1109/ACCESS.2018.2887234.
doi:10.1109/ACCESS.2018.2887234

14. Esfandiyari, M., A. Lalbakhsh, S. Jarchi, M. Ghaffari-Miab, H. Noori Mahtaj, and R. B. V. B. Simorangkir, "Tunable terahertz filter/antenna-sensor using graphene-based metamaterials," Materials & Design, Vol. 220, 110855, 2022, doi: 10.1016/j.matdes.2022.110855.
doi:10.1016/j.matdes.2022.110855

15. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2790-2800, Apr. 2022, doi: 10.1109/TAP.2021.3138256.
doi:10.1109/TAP.2021.3138256

16. Das, P., K. Mandal, and A. Lalbakhsh, "Beam-steering of microstrip antenna using single-layer FSS based phase-shifting surface," Int. J. RF Microw. Comput. Aided Eng., Vol. 32, No. 3, e23033, 2022, doi: 10.1002/mmce.23033.
doi:10.1002/mmce.23033

17. Das, P., K. Mandal, and A. Lalbakhsh, "Single-layer polarization-insensitive frequency selective surface for beam reconfigurability of monopole antennas," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 1, 86-102, 2020.
doi:10.1080/09205071.2019.1688693

18. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 912-915, 2017, doi: 10.1109/LAWP.2016.2614498.
doi:10.1109/LAWP.2016.2614498

19. Lalbakhsh, A., R. B. V. B. Simorangkir, N. Bayat-Makou, A. Kishk, and K. Esselle, "Advancements and artificial intelligence approaches in antennas for environmental sensing," Artificial Intelligence and Data Science in Environmental Sensing, 1st Edition, Chapter 2, 19-38, Elsevier, 2022, doi: 10.1016/B978-0-323-90508-4.00004-6.

20. Supreeyatitikul, N., T. Lertwiriyaprapa, and C. Phongcharoenpanich, "S-shaped metasurface-based wideband circularly polarized patch antenna for C-band applications," IEEE Access, Vol. 9, 23944-23955, 2021, doi: 10.1109/ACCESS.2021.3056485.
doi:10.1109/ACCESS.2021.3056485

21. Zarbakhsh, S., M. Akbari, F. Samadi, and A. Sebak, "Broadband and high-gain circularly-polarized antenna with low RCS," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 16-23, Jan. 2019, doi: 10.1109/TAP.2018.2876234.
doi:10.1109/TAP.2018.2876234

22. Tran, H. H., C. D. Bui, N. Nguyen-Trong, and T. K. Nguyen, "A wideband non-uniform metasurface-based circularly polarized recon gurable antenna," IEEE Access, Vol. 9, 42325-42332, 2021, doi: 10.1109/ACCESS.2021.3066182.
doi:10.1109/ACCESS.2021.3066182

23. Liu, Z., Y. Liu, and S. Gong, "Gain enhanced circularly polarized antenna with RCS reduction based on metasurface," IEEE Access, Vol. 6, 46856-46862, 2018, doi: 10.1109/ACCESS.2018.2865533.
doi:10.1109/ACCESS.2018.2865533

24. Supreeyatitikul, N., A. Boonpoonga, and C. Phongcharoenpanich, "Z-shaped metasurface-based wideband circularly polarized Fabry-Pérot antenna for C-band satellite technology," IEEE Access, Vol. 10, 59428-59441, 2022.
doi:10.1109/ACCESS.2022.3179360

25. Zheng, B., N. Li, X. Li, X. Rao, and Y. Shan, "Miniaturized wideband CP antenna using hybrid embedded metasurface structure," IEEE Access, Vol. 10, 120056-120062, 2022, doi: 10.1109/ACCESS.2022.3221825.
doi:10.1109/ACCESS.2022.3221825

26. Zheng, Q., C. Guo, and J. Ding, "Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1459-1463, Aug. 2018, doi: 10.1109/LAWP.2018.2849352.
doi:10.1109/LAWP.2018.2849352

27. Rajanna, P. K. T., K. Rudramuni, and K. Kandasamy, "A wideband circularly polarized slot antenna backed by a frequency selective surface," Journal of Electromagnetic Engineering Sciences, Vol. 19, No. 3, 166-171, 2019.
doi:10.26866/jees.2019.19.3.166

28. Sharma, A., et al. "Wideband high-gain circularly-polarized low RCS dipole antenna with a frequency selective surface," IEEE Access, Vol. 7, 156592-156602, 2019, doi: 10.1109/ACCESS.2019.2948176.
doi:10.1109/ACCESS.2019.2948176

29. Adibi, S., M. A. Honarvar, and A. Lalbakhsh, "Gain enhancement of wideband circularly polarized UWB antenna using FSS," Radio Science, Vol. 56, e2020RS007098, 2021, https://doi.org/10.1029/2020RS007098.

30. Li, K., Y. Liu, Y. Jia, and Y. J. Guo, "A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4288-4292, Aug. 2017, doi: 10.1109/TAP.2017.2710231.
doi:10.1109/TAP.2017.2710231

31. Chen, Q. and H. Zhang, "Dual-patch polarization conversion metasurface-based wideband circular polarization slot antenna," IEEE Access, Vol. 6, 74772-74777, 2018, doi: 10.1109/AC-CESS.2018.2883992.
doi:10.1109/ACCESS.2018.2883992

32. Rajanna, P., K. Rudramuni, and K. Kandasamy, "Characteristic mode-based compact circularly polarized metasurface antenna for in-band RCS reduction," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 2, 131-137, 2020, doi: 10.1017/S1759078719001119.
doi:10.1017/S1759078719001119

33. Genovesi, S. and F. A. Dicandia, "Characteristic modes analysis of a near-field polarization-conversion metasurface for the design of a wideband circularly polarized X-band antenna," IEEE Access, Vol. 10, 88932-88940, 2022, doi: 10.1109/ACCESS.2022.3200303.
doi:10.1109/ACCESS.2022.3200303

34. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, S. L. Smith, and B. A. Zeb, "Single-dielectric wideband partially reflecting surface with variable reflection components for realization of a compact high-gain resonant cavity antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1916-1921, Mar. 2019, doi: 10.1109/TAP.2019.2891232.
doi:10.1109/TAP.2019.2891232

35. Young, S. M., M. Kauf, J. Kutsch, and A. Grbic, "Additively-manufactured all-dielectric microwave polarization converters using ceramic stereolithography," IEEE Open Journal of Antennas and Propagation, Vol. 4, 339-348, 2023, doi: 10.1109/OJAP.2023.3257355.
doi:10.1109/OJAP.2023.3257355

36. Lalbakhsh, A., M. U. Afzal, T. Hayat, et al. "All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources," Sci. Rep., Vol. 11, 9421, 2021, https://doi.org/10.1038/s41598-021-88547-3.
doi:10.1038/s41598-021-88547-3

37. Ding, K., Y.-X. Guo, and C. Gao, "CPW-fed wideband circularly polarized printed monopole antenna with open loop and asymmetric ground plane," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 833-836, 2017, doi: 10.1109/LAWP.2016.2606557.
doi:10.1109/LAWP.2016.2606557