1. Bera, C. S., "Amplitude tilt active equalizer for frequency and temperature compensation," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 7, 344-346, 2011.
doi:10.1109/LMWC.2011.2152385
2. Zhou, T. and J. Huang, "A novel wideband microwave gain equalizer using SIR branch lines," IEEE Asia-Pacific Conference on Antennas and Propagation, 2014.
3. Wang, H., B. Yan, Z. Wang, and R.-M. Xu, "A broadband microwave gain equalizer," Progress In Electromagnetics Research Letters, Vol. 33, 63-72, 2012.
doi:10.2528/PIERL12052309
4. He, H. H. and X. Lei, "Microwave LTCC equalizer based on composite right/left-handed structure," 2015 IEEE International Conference on Communication Problem-Solving (ICCP), 274-277, IEEE, 2016.
5. Zhou, P., X. Xie, J. Xie, et al. "A new research of broadband microwave gain equalizer," International Workshop on Microwave & Millimeter Wave Circuits & System Technology, 1-4, IEEE, 2012.
6. Xu, J., D. Zhou, D. Lv, et al. "A novel microwave equalizer using substrate integrated waveguide concept," 2011 China-Japan Joint Microwave Conference, 1-3, IEEE, 2011.
7. Wang, S., Y. Wang, D. Zhang, et al. "Design of tunable equalizers using multilayered half mode substrate integrated waveguide structures added absorbing pillars," Advances in Materials Science and Engineering, Vol. 4, 1-7, 2015.
8. Peng, H., F. Zhao, J. Dong, et al. "Substrate integrated waveguide equalizers and attenuators with surface resistance," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 4, 1487-1495, 2020.
doi:10.1109/TMTT.2019.2958267
9. Peng, H., S. Huang, Y. Wu, et al. "Low cost/insertion loss substrate-integrated waveguide equalizer based on absorbing materials," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 11, No. 11, 1948-1954, 2021.
doi:10.1109/TCPMT.2021.3113978
10. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory & Techniques, Vol. 53, No. 1, 66-73, 2005.
doi:10.1109/TMTT.2004.839303
11. Kim, H., J. S. Horwitz, A. Pique, et al. "Effect of film thickness on the properties of indium tin oxide thin film grown by pulsed-laser deposition for organic light-emitting diodes," Journal of Applied Physics, Vol. 88, No. 10, 6021-6025, 2000.
doi:10.1063/1.1318368
12. Kim, H., C. M. Gilmore, A. Pique, et al. "Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices," Journal of Applied Physics, Vol. 86, No. 11, 6451-6451, 1999.
doi:10.1063/1.371708
13. Li, D., X. Hu, B. Gao, W.-Y. Yin, H. Chen, and H. Qian, "Highly transparent tunable microwave perfect absorption for broadband microwave shielding," Progress In Electromagnetics Research, Vol. 176, 35-44, 2022.
14. Sun, G., B. Muneer, Q. Zhu, et al. "A study of microstrip antenna made of transparent ITO films," IEEE Antennas and Propagation Society International Symposium, 1867-1868, 2014.
15. Jia, W., M. Liu, Y. Lu, et al. "Broadband terahertz wave generation from an epsilon-near-zero material," Light: Science & Applications, Vol. 10, No. 11, 2021.
16. Lu, Y., X. Feng, Q. Wang, et al. "Integrated terahertz generator-manipulators using epsilon-near-zero-hybrid nonlinear metasurfaces," Nano Letters, Vol. 18, No. 21, 7699-7707, 2021.
doi:10.1021/acs.nanolett.1c02372