Vol. 177
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-03-23
Highly Sensitive Temperature Sensing via Photonic Spin Hall Effect
By
Progress In Electromagnetics Research, Vol. 177, 21-32, 2023
Abstract
In this work, we propose a highly sensitive temperature sensor based on photonic spin Hall effect (PSHE). We find that, by involving the liquid crystal (LC) material, the spin spatial and angular shifts in PSHE are very sensitive to the tiny perturbation of temperature when the incident angle of light beam is near the Brewster and critical angles. Importantly, the phase transition from liquid crystal state to liquid state across the clearing point (CP) will lead to the transition of strong spin-orbit interaction to the weak one. During this process, we reveal that the sensitivity of our designed temperature sensor can reach a giant value with 8.27 cm/K which is one order of magnitude improvement compared with the previous Goos-Hänchen effect-based temperature sensor. This work provides an effective method for precisely determining the position of CP and actively manipulating the spin-orbit interaction.
Citation
Shuaijie Yuan, Jin Yang, Yong Wang, Yu Chen, and Xinxing Zhou, "Highly Sensitive Temperature Sensing via Photonic Spin Hall Effect," Progress In Electromagnetics Research, Vol. 177, 21-32, 2023.
doi:10.2528/PIER23012902
References

1. Wade, S. A., S. F. Collins, and G. W. Baxter, "Fluorescence intensity ratio technique for optical fiber point temperature sensing," J. Appl. Phys., Vol. 94, 4743-4756, 2003.
doi:10.1063/1.1606526

2. Li, E., X. Wang, and C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," Appl. Phys. Lett., Vol. 89, 091119, 2006.
doi:10.1063/1.2344835

3. Choi, H. Y., K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer," Opt. Lett., Vol. 33, 2455-2457, 2008.
doi:10.1364/OL.33.002455

4. Ramakrishnan, M., G. Rajan, Y. Semenova, and G. Farrell, "Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials," Sensors, Vol. 16, 99, 2016.
doi:10.3390/s16010099

5. Perez-Garcia, G. F., J. L. Camas-Anzueto, G. Anzueto-Sanchez, M. Perez-Patricio, and F. R. Lopez-Estrada, "Demonstration of improving the sensitivity of a fiber optic temperature sensor using the wavelength of maximum absorption of the lophine," Measurement, Vol. 187, 110378, 2022.
doi:10.1016/j.measurement.2021.110378

6. Song, E., M. Chen, Z. Chen, et al. "Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor," Nat. Commun., Vol. 13, 1-9, 2022.

7. Moreira, M. F., et al., "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett., Vol. 85, 2691-2693, 2004.
doi:10.1063/1.1781363

8. Zhao, L., Y. Wang, Y. Yuan, et al. "Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor," Opt. Commun., Vol. 402, 181-185, 2017.
doi:10.1016/j.optcom.2017.06.008

9. Wang, F., Y. Liu, Y. Lu, L. Zhang, J. Ma, L. Wang, and W. Sun, "High-sensitivity Fabry-Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect," Opt. Lett., Vol. 43, 5355-5358, 2018.
doi:10.1364/OL.43.005355

10. Chiang, L. Y., C. T. Wang, T. S. Lin, S. Pappert, and P. Yu, "Highly sensitive silicon photonic temperature sensor based on liquid crystal filled slot waveguide directional coupler," Opt. Express, Vol. 28, 29345-29356, 2020.
doi:10.1364/OE.403710

11. Chen, C., W.-C. Lin, L.-S. Liao, et al. "Optical temperature sensing based on the Goos-Hanchen effect," Appl. Opt., Vol. 46, 5347-5351, 2007.
doi:10.1364/AO.46.005347

12. Tang, T., C. Li, L. Luo, Y. Zhang, and Q. Yuan, "Thermo-optic Imbert-Fedorov effect in a prism- waveguide coupling system with silicon-on-insulator," Opt. Commun., Vol. 370, 49-54, 2016.
doi:10.1016/j.optcom.2016.03.005

13. Turhan-Sayan, G., "Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor," J. Lightwave Technol., Vol. 21, 805, 2003.
doi:10.1109/JLT.2003.809552

14. Chen, C. W., H. P. Chiang, D. P. Tsai, and P. T. Leung, "Temperature dependence of the surface- plasmon-induced Goos-Hanchen shifts," Appl. Phys. B, Vol. 107, 111-118, 2012.
doi:10.1007/s00340-011-4756-0

15. Xu, Y., L. Wu, and L. K. Ang, "Ultrasensitive optical temperature transducers based on surface plasmon resonance enhanced composited Goos-Hanchen and Imbert-Fedorov shifts," IEEE J. Sel. Top. Quantum Electron., Vol. 27, 1-8, 2021.
doi:10.1109/JSTQE.2021.3093212

16. Onoda, M., S. Murakami, and N. Nagaosa, "Hall effect of light," Phys. Rev. Lett., Vol. 93, 083901, 2004.
doi:10.1103/PhysRevLett.93.083901

17. Bliokh, K. Y. and Y. P. Bliokh, "Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet," Phys. Rev. Lett., Vol. 96, 073903, 2006.
doi:10.1103/PhysRevLett.96.073903

18. Hosten, O. and P. Kwiat, "Observation of the spin Hall effect of light via weak measurements," Science, Vol. 319, 787-790, 2008.
doi:10.1126/science.1152697

19. Bliokh, K. Y., A. Niv, V. Kleiner, and E. Hasman, "Geometrodynamics of spinning light," Nat. Photon., Vol. 2, 748, 2008.
doi:10.1038/nphoton.2008.229

20. Qin, Y., Y. Li, H. He, and Q. Gong, "Measurement of spin Hall effect of reflected light," Opt. Lett., Vol. 34, 2551, 2009.
doi:10.1364/OL.34.002551

21. Ling, X., X. Zhou, K. Huang, and Y. Liu, "Recent advances in the spin Hall effect of light," Rep. Prog. Phys., Vol. 80, 066401, 2017.
doi:10.1088/1361-6633/aa5397

22. Kim, M., D. Lee, and J. Rho, "Spin Hall effect: Spin Hall effect under arbitrarily polarized or unpolarized light," Laser Photonics Rev., Vol. 15, 7, 2021.

23. Petersen, J., J. Volz, and A. Rauschenbeutel, "Chiral nanophotonic waveguide interface based on spin-orbit interaction of light," Science, Vol. 34, 67-71, 2014.
doi:10.1126/science.1257671

24. Bliokh, K. Y., F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, "Spin-orbit interactions of light," Nat. Photon., Vol. 9, 796, 2015.
doi:10.1038/nphoton.2015.201

25. Cardano, F. and L. Marrucci, "Spin-orbit photonics," Nat. Photon., Vol. 9, 776, 2015.
doi:10.1038/nphoton.2015.232

26. Shao, Z., J. Zhu, Y. Chen, Y. Zhang, and S. Yu, "Spin-orbit interaction of light induced by transverse spin angular momentum engineering," Nat. Commun., Vol. 9, 1-11, 2018.
doi:10.1038/s41467-017-02088-w

27. Fu, S., C. Guo, G. Liu, Y. Li, H. Yin, Z. Li, and Z. Chen, "Spin-orbit optical Hall effect," Phys. Rev. Lett., Vol. 123, 243904, 2019.
doi:10.1103/PhysRevLett.123.243904

28. Fang, L., H. Wang, Y. Liang, H. Cao, and J. Wang, "Spin-orbit mapping of light," Phys. Rev. Lett., Vol. 127, 233901, 2021.
doi:10.1103/PhysRevLett.127.233901

29. Chi, C., Q. Jiang, Z. Liu, L. Zheng, M. Jiang, H. Zhang, F. Lin, B. Shen, and Z. Fang, "Selectively steering photon spin angular momentum via electron-induced optical spin Hall effect," Sci. Adv., Vol. 7, eabf8011, 2021.
doi:10.1126/sciadv.abf8011

30. Zhou, X., Z. Xiao, H. Luo, and S. Wen, "Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements," Phys. Rev. A, Vol. 85, 043809, 2012.
doi:10.1103/PhysRevA.85.043809

31. Mi, C., S. Chen, X. Zhou, K. Tian, H. Luo, and S. Wen, "Observation of tiny polarization rotation rate in total internal reflection via weak measurements," Photonics Res., Vol. 5, 92-96, 2017.
doi:10.1364/PRJ.5.000092

32. Wang, B., K. Rong, E. Maguid, V. Kleiner, and E. Hasman, "Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect," Nat. Nanotechnol., Vol. 15, 450-456, 2020.
doi:10.1038/s41565-020-0670-0

33. Wang, R., J. Zhou, K. Zeng, et al. "Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect," Apl. Photonics, Vol. 5, 016105, 2020.
doi:10.1063/1.5131183

34. Li, S., Z. Chen, L. Xie, Q. Liao, X. Zhou, Y. Chen, and X. Lin, "Weak measurements of the waist of an arbitrarily polarized beam via in-plane spin splitting," Opt. Express, Vol. 29, 8777-8785, 2021.
doi:10.1364/OE.420432

35. Zhou, X., L. Sheng, and X. Ling, "Photonic spin Hall effect enabled refractive index sensor using weak measurements," Sci. Rep., Vol. 8, 1-8, 2018.

36. Zhu, W., H. Xu, J. Pan, et al. "Black phosphorus terahertz sensing based on photonic spin Hall effect," Opt. Express, Vol. 28, 25869-25878, 2020.
doi:10.1364/OE.399071

37. Nie, P., L. Sheng, L. Xie, Z. Chen, X. Zhou, Y. Chen, and X. Lin, "Gas sensing near exceptional points," J. Phys. D, Vol. 54, 254001, 2021.
doi:10.1088/1361-6463/abf167

38. Liu, S., X. Yin, and H. Zhao, "Dual-function photonic spin Hall effect sensor for high-precision refractive index sensing and graphene layer detection," Opt. Express, Vol. 30, 31925-31936, 2022.
doi:10.1364/OE.463923

39. Zhou, J., H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, "Broadband photonic spin Hall meta-lens," ACS Nano, Vol. 12, 82-88, 2018.
doi:10.1021/acsnano.7b07379

40. Du, L., et al., "On-chip photonic spin Hall lens," ACS Photonics, Vol. 6, 1840-1847, 2019.
doi:10.1021/acsphotonics.9b00551

41. Jin, R., L. Tang, J. Li, J. Wang, Q. Wang, Y. Liu, and Z. G. Dong, "Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin hall effect," ACS Photonics, Vol. 7, 512-518, 2020.
doi:10.1021/acsphotonics.9b01608

42. Xie, Z., T. Lei, H. Qiu, Z. Zhang, H. Wang, and X. Yuan, "Broadband on-chip photonic spin Hall element via inverse design," Photonics Res., Vol. 8, 121-126, 2020.
doi:10.1364/PRJ.8.000121

43. He, A., Y. Xu, B. Gao, T. Zhang, and J. Zhang, "Subwavelength broadband photonic spin hall devices via optical slot antennas," Laser Photonics Rev., Vol. 15, 2000460, 2021.
doi:10.1002/lpor.202000460

44. Lei, T., C. Zhou, D. Wang, et al. "On-chip high-speed coherent optical signal detection based on photonic spin-Hall effect," Laser Photonics Rev., Vol. 16, 2100669, 2022.
doi:10.1002/lpor.202100669

45. Jackson, J. D., Classical Electrodynamics, Wiley, 1962.

46. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, 2008.

47. Vuks, M. F., "Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals," Opt. Spectrosc., Vol. 20, 361, 1966.

48. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys., Vol. 95, 896-901, 2004.
doi:10.1063/1.1635971

49. Li, J., S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys., Vol. 96, 19-24, 2004.
doi:10.1063/1.1757034

50. Wu, S. T., "Birefringence dispersions of liquid crystals," Phys. Rev. A, Vol. 33, 1270, 1986.
doi:10.1103/PhysRevA.33.1270

51. Haller, I., "Thermodynamic and static properties of liquid crystals," Prog. Solid State Chem., Vol. 10, 103-118, 1975.
doi:10.1016/0079-6786(75)90008-4

52. Li, J., S. Gauzia, and S. T. Wu, "High temperature-gradient refractive index liquid crystals," Opt. Express, Vol. 12, 2002-2010, 2004.
doi:10.1364/OPEX.12.002002

53. Luo, H., W. Hu, X. Yi, H. Liu, and J. Zhu, "Amphoteric refraction at the interface between isotropic and anisotropic media," Opt. Commun., Vol. 254, 353-360, 2005.
doi:10.1016/j.optcom.2005.05.050

54. Shah, S., X. Lin, L. Shen, M. Renuka, B. Zhang, and H. Chen, "Interferenceless polarization splitting through nanoscale van der Waals heterostructures," Phys. Rev. Appl., Vol. 10, 034025, 2018.
doi:10.1103/PhysRevApplied.10.034025

55. Aiello, A., M. Merano, and J. P. Woerdman, "Duality between spatial and angular shift in optical reflection," Phys. Rev. A, Vol. 80, 061801, 2009.
doi:10.1103/PhysRevA.80.061801

56. Zhou, X., L. Xie, X. Ling, S. Cheng, Z. Zhang, H. Luo, and H. Sun, "Large in-plane asymmetric spin angular shifts of a light beam near the critical angle," Opt. Lett., Vol. 44, 207-210, 2019.
doi:10.1364/OL.44.000207

57. Ling, X., X. Zhou, X. Yi, et al. "Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence," Light: Sci. Appl., Vol. 4, e290, 2015.
doi:10.1038/lsa.2015.63

58. Ling, X., F. Guan, X. Cai, et al. "Topology-induced phase transitions in spin-orbit photonics," Laser Photonics Rev., Vol. 15, 2000492, 2021.
doi:10.1002/lpor.202000492

59. Ling, X., W. Xiao, S. Chen, X. Zhou, H. Luo, and L. Zhou, "Revisiting the anomalous spin-Hall effect of light near the Brewster angle," Phys. Rev. A, Vol. 103, 033515, 2021.
doi:10.1103/PhysRevA.103.033515

60. Mazanov, M., O. Yermakov, A. Bogdanov, and A. Lavrinenko, "On anomalous optical beam shifts at near-normal incidence," APL Photonics, Vol. 7, 101301, 2022.
doi:10.1063/5.0111203

61. Neugebauer, M., S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, "Weak measurement enhanced spin Hall effect of light for particle displacement sensing," Nano Lett., Vol. 19, 422, 2019.
doi:10.1021/acs.nanolett.8b04219