Vol. 115
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-03-06
Performance Evaluation of Biophotonic Cholesterol Sensor Using 1D Photonic Crystal Cavity Structure
By
Progress In Electromagnetics Research M, Vol. 115, 141-149, 2023
Abstract
An efficient biochemical sensor for the detection of cholesterol concentration using 1-dimensional photonic crystal (1D-PhC) based cavity structure has been proposed in this paper. The structure comprises a 1-dimensional alternating dielectric photonic crystal designed as (A/B)2/Dd/(A/B)2 for measuring cholesterol concentration in blood, where `A' and `B' represent high and low refractive index materials, respectively. A cavity containing the cholesterol is inserted in the middle of the structure to assess its concentration. The transfer matrix method is used to analyze the reflection characteristics of the proposed multilayer structure. Sensitivity is analyzed by taking the difference in shifted resonant wavelength by infiltrating varying cholesterol concentrations ranging from 200 to 300 mg/dl. After rigorous optimization, it has been observed that the maximum sensitivity of 2.9 nm/(mg/dl) or 325 nm/RIU can be achieved.
Citation
Diptimayee Dash, and Jasmine Saini, "Performance Evaluation of Biophotonic Cholesterol Sensor Using 1D Photonic Crystal Cavity Structure," Progress In Electromagnetics Research M, Vol. 115, 141-149, 2023.
doi:10.2528/PIERM23012505
References

1. Soliman, G. A., "Dietary cholesterol and the lack of evidence in cardiovascular disease," Nutrients, Vol. 10, No. 6, MDPI AG, 2018, [doi: 10.3390/nu10060780].
doi:10.3390/nu10060780

2. Russell, R., "Atherosclerosis-an inflammatory disease," N. Engl. J. Med., Vol. 340, 115-126, 1999, [doi: 10.1056/NEJM199901143400207].

3. Soutar, A. K. and R. P. Naoumova, "Mechanisms of disease: Genetic causes of familial hypercholesterolemia," Nature Clinical Practice Cardiovascular Medicine, Vol. 4, No. 4, 2007, [doi: 10.1038/ncpcardio0836].
doi:10.1038/ncpcardio0836

4. McNamara, D. J., "Dietary cholesterol and atherosclerosis," Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, Vol. 1529, 1-3, 2000, [doi: 10.1016/S1388-1981(00)00156-6].

5. Nguyen, H. B., H. D. Le, V. Q. Nguyen, T. T. T. Ngo, Q. P. Do, X. N. Nguyen, and N. M. Phan, "Development of the layer-by-layer biosensor using graphene films: Application for cholesterol determination," Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol. 4, No. 1, 2013, [doi: 10.1088/2043-6262/4/1/015013].

6. Budiyanto, M., Suhariningsih, and M. Yasin, "Cholesterol detection using optical fiber sensor based on intensity modulation," Journal of Physics: Conference Series, Vol. 853, No. 1, 2017, [doi: 10.1088/1742-6596/853/1/012008].

7. Razo-Medina, D. A., E. A. Méndez, and M. T. Durán, "Thin film of sol-gel deposited in photonic crystal fiber for cholesterol detection," Nanosensors, Biosensors, and Info-Tech Sensors and Systems, Vol. 9434, 2015, [doi: 10.1117/12.2084280].

8. Goyal, A. K., A. Kumar, and Y. Massoud, "Thermal stability analysis of surface wave assisted bio-photonic sensor," Photonics, Vol. 9, No. 5, 324, 2022, [doi: 10.3390/photonics9050324].
doi:10.3390/photonics9050324

9. Goyal, A. K. and J. Saini, "Performance analysis of Bloch surface wave-based sensor using transition metal dichalcogenides," Applied Nanoscience (Switzerland), Vol. 10, No. 11, 2020, [doi: 10.1007/s13204-020-01538-0].

10. Goyal, A. K., H. S. Dutta, and S. Pal, "Development of uniform porous one-dimensional photonic crystal based sensor," Optik (Stuttg), Vol. 223, 2020, [doi: 10.1016/j.ijleo.2020.165597].

11. Nouman, W. M., S. E-S. Abd El-Ghany, S. M. Sallam, A.-F. B. Dawood, and A. H. Aly, "Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal," Opt. Quantum Electron, Vol. 52, No. 6, 2020, [doi: 10.1007/s11082-020-02409-2].
doi:10.1007/s11082-020-02409-2

12. Goyal, A. K., "Design analysis of one-dimensional photonic crystal-based structure for hemoglobin concentration measurement," Progress In Electromagnetics Research M, Vol. 97, 2020, [doi: 10.2528/pierm20080601].

13. Dash, D., J. Saini, A. K. Goyal, and Y. Massoud, "Exponentially index modulated nanophotonic resonator for high-performance sensing applications," Scientific Report, Vol. 13, 1431, 2023, [https://doi.org/10.1038/s41598-023-28235-6].
doi:10.1038/s41598-023-28235-6

14. Robertson, W. M. and M. S. May, "Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays," Appl. Phys. Lett., Vol. 74, No. 13, 1800-1802, American Institute of Physics Inc., 1999, [doi: 10.1063/1.123090].
doi:10.1063/1.123090

15. Goyal, A. K., H. S. Dutta, and S. Pal, "Porous photonic crystal structure for sensing applications," J. Nanophotonics, SPIE-Intl. Soc. Optical Eng., Vol. 12, No. 4, 1, 2018, [doi: 10.1117/1.jnp.12.040501].

16. Dutta, H. S., A. K. Goyal, and S. Pal, "Analysis of dispersion diagram for high performance refractive index sensor based on photonic crystal waveguides," Photonics Nanostruct, Vol. 23, 2017, [doi: 10.1016/j.photonics.2016.11.004].

17. Goyal, A. K., H. S. Dutta, and S. Pal, "Performance optimization of photonic crystal resonator based sensor," Optical and Quantum Electronics, Vol. 48, 431, 2016, [doi: 10.1007/s11082-016-0701-0].
doi:10.1007/s11082-016-0701-0

18. Panda, A. and P. D. Pukhrambam, "Analysis of GaN-based 2D photonic crystal sensor for real-time detection of alcohols," Brazilian Journal of Physics, Vol. 51, No. 3, 481-492, Springer, 2021, [doi: 10.1007/s13538-021-00856-0].
doi:10.1007/s13538-021-00856-0

19. Aly, A. H., Z. A. Zaky, A. S. Shalaby, A. M. Ahmed, and D. Vigneswaran, "Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor," Phys. Scr., Vol. 95, No. 3, Institute of Physics Publishing, 2020, [doi: 10.1088/1402-4896/ab53f5].
doi:10.1088/1402-4896/ab53f5

20. Banerjee, A., "Enhancement in sensitivity of blood glucose sensor by using 1D defect ternary photonic band gap structures," Journal of Optics, Vol. 48, No. 2, India, 2019, [doi: 10.1007/s12596-019-00521-5].
doi:10.1007/s12596-019-00521-5

21. Goyal, A. K. and S. Pal, "Design analysis of Bloch surface wave-based sensor for haemoglobin concentration measurement," Applied Nanoscience (Switzerland), Vol. 10, No. 9, 3639-3647, Springer Science and Business Media Deutschland GmbH, 2020, [doi: 10.1007/s13204-020-01437-4].
doi:10.1007/s13204-020-01437-4

22. Aly, A. H., D. Mohamed, M.A. Mohaseb, and N. S. Abd El-Gawaad, "Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal," RSC Adv., Vol. 10, No. 53, 31765-31772, Royal Society of Chemistry, 2020, [doi: 10.1039/d0ra05448h].
doi:10.1039/D0RA05448H

23. Goyal, A. K., H. S. Dutta, and S. Pal, "Design and analysis of photonic crystal micro-cavity based optical sensor platform," AIP Conference Proceedings, Vol. 1724, 2016, [doi: 10.1063/1.4945125].

24. Yeh, P. and M. Hendry, "Optical waves in layered media," Phys. Today, Vol. 43, No. 1, 1990, [doi: 10.1063/1.2810419].
doi:10.1063/1.2810419

25. Goyal, A. K., M. Husain, and Y. Y. Massoud, "Analysis of interface mode localization in disordered photonic crystal structure," J. Nanophoton., Vol. 16, No. 4, 046007, 2022, [doi: 10.1117/1.JNP.16.046007].
doi:10.1117/1.JNP.16.046007

26. Dhinaa, A. N. and P. K. Palanisamy, "Z-scan technique for measurement of total cholesterol and triglycerides in blood," Journal of Innovative Optical Health Sciences, Vol. 2, No. 3, 295-301, 2009, [https://doi.org/10.1142/S1793545809000565].
doi:10.1142/S1793545809000565

27. Edappadikkunnummal, S., R. C. Vasudevan, S. Dinesh, S. Thomas, N. R. Desai, and S. Kaniyarakkal, "Detection of hemoglobin concentration based on defective one-dimensional photonic crystals," Photonics, Vol. 9, No. 9, 660, 2022, [https://doi.org/10.3390/photonics9090660].
doi:10.3390/photonics9090660

28. Pathania, P. and M. S. Shishodia, "Gain-assisted transition metal ternary nitrides (Ti1-xZrxN) core-shell based sensing of waterborne bacteria in drinking water," Plasmonics, Vol. 14, 1435-1442, 2019, https://doi.org/10.1007/s11468-019-00927-8.
doi:10.1007/s11468-019-00927-8

29. Aly, A. H., S. K. Awasthi, A. M. Mohamed, M. Al-Dossari, Z. S. Matar, M. A. Mohaseb, N. S. Abd El-Gawaad, and A. F. Amin, "1D reconfigurable bistable photonic device composed of phase change material for detection of reproductive female hormones," Phys. Scr., Vol. 96, No. 12, 125533, 2021, [doi: 10.1088/1402-4896/ac3efa].
doi:10.1088/1402-4896/ac3efa

30. Sharma, S. and A. Kumar, "Design of a biosensor for the detection of dengue virus using 1D photonic crystals," Plasmonics, Vol. 17, No. 2, 675-680, 2022, [https://doi.org/10.1007/s11468-021-01555-x].
doi:10.1007/s11468-021-01555-x

31. Taya, S. A., A. Sharma, N. Doghmosh, and I. Colak, "Detection of water concentration in ethanol solution using a ternary photonic crystal-based sensor," Materials Chemistry and Physics, Vol. 279, 125772, 2022, [doi: 10.1016/j.matchemphys.2022.125772].
doi:10.1016/j.matchemphys.2022.125772

32. Panda, A. and P. D. Pukhrambam, "Study of metal-porous GaN-based 1D photonic crystal tamm plasmon sensor for detection of fat concentrations in milk," Micro and Nanoelectronics Devices, Circuits and Systems, Vol. 904, 415-425, 2022, [https://doi.org/10.1007/978-981-19-2308-1_42].