Vol. 110
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-05-09
Design and Analysis of S-Shaped Broadside Coupled Metamaterial Unit Cell as a Sensor to Ease the Classification of Different Oil Samples
By
Progress In Electromagnetics Research Letters, Vol. 110, 83-91, 2023
Abstract
This paper aims to classify oil samples using the Metamaterial (MTM) unit cell as a sensor. The S-shaped broadside coupled Split-Ring Resonator (SRR) acts as an MTM and is designed to operate at X-band (8-12.4 GHz). The proposed MTM unit cell was simulated through the High Frequency EM simulation tool, and then the MTM properties were extracted using the standard equations. The MTM behavior was studied through its negative permittivity and permeability characteristics in the X-Band. The simulated and extracted properties exhibit that the proposed MTM unit cell is suitable for the analysis at X-band. A sample container was designed to hold the different oil samples. The experimental analysis was carried out by filling the container with different oils without/with an MTM sensor. Mainly, the variations in S-parameters magnitude were studied for classification applications. This paper proposes the study of transmission coefficients phase response in addition to magnitude as an easy way to classify different oils. Further, the phase transition results were compared with the kinematic viscosity and refractive index properties of the oil sample. The comparison results proved that the classification of oil samples using the phase transition approach agrees well with the existing oil properties.
Citation
Jeyagobi Logeswaran, and Rajasekar Boopathi Rani, "Design and Analysis of S-Shaped Broadside Coupled Metamaterial Unit Cell as a Sensor to Ease the Classification of Different Oil Samples," Progress In Electromagnetics Research Letters, Vol. 110, 83-91, 2023.
doi:10.2528/PIERL23012501
References

1. Malena, L., O. Fiser, P. R. Stauffer, T. Drizdal, J. Vrba, and D. Vrba, "Feasibility evaluation of metamaterial microwave sensors for non-invasive blood glucose monitoring," Sensors, Vol. 21, No. 20, 6871, 2021.
doi:10.3390/s21206871

2. Islam, M. R., M. T. Islam, A. Hoque, M. S. Soliman, B. Bais, N. M. Sahar, and S. H. A. Almalki, "Tri circle split ring resonator shaped metamaterial with mathematical modeling for oil concentration sensing," IEEE Access, Vol. 9, 161087-161102, 2021.
doi:10.1109/ACCESS.2021.3131905

3. Lee, W., S.-I. Choi, H.-I. Kim, S. Hwang, S. Jeon, and Y.-K. Yoon, "Metamaterial-integrated high-gain rectenna for RF sensing and energy harvesting applications," Sensors, Vol. 21, No. 19, 6580, 2021.
doi:10.3390/s21196580

4. Abdulkarim, Y. I., L. Deng, O. Altintas, E. Unal, and M. Karaaslan, "Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics," Physica E: Low-dimensional Systems and Nanostructures, Vol. 114, 113593, 2019.
doi:10.1016/j.physe.2019.113593

5. Islam, M. T., A. Hoque, A. F. Almutairi, and N. Amin, "Left-handed metamaterial-inspired unit cell for S-band glucose sensing application," Sensors, Vol. 19, No. 1, 169, 2019.
doi:10.3390/s19010169

6. Logeswaran, J. and R. B. Rani, "UWB antenna as a sensor for the analysis of dissolved particles and water quality," Progress In Electromagnetics Research Letters, Vol. 106, 31-39, 2022.
doi:10.2528/PIERL22062901

7. Ahmed, K., M. J. Haque, M. A. Jabin, B. K. Paul, I. S. Amiri, and P. Yupapin, "Tetra-core surface plasmon resonance based biosensor for alcohol sensing," Physica B: Condensed Matter, Vol. 570, 2019.

8. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

9. Tamer, A., F. Karadag, E. Unal, Y. I. Abdulkarim, L. Deng, O. Altintas, M. Bakir, and M. Karaaslan, "Metamaterial based sensor integrating transmission line for detection of branded and unbranded diesel fuel," Chemical Physics Letters, Vol. 742, 137169, 2020.
doi:10.1016/j.cplett.2020.137169

10. Abdulkarim, Y. I., L. Deng, M. Karaaslan, S. Dalgac, R. H. Mahmud, F. Ozkan Alkurt, F. F. Muhammadsharif, H. N. Awl, S. Huang, and H. Luo, "The detection of chemical materials with a metamaterial-based sensor incorporating oval wing resonators," Electronics, Vol. 9, 825, 2020.
doi:10.3390/electronics9050825

11. Altintas, O., M. Aksoy, and E. Unal, "Design of a metamaterial inspired omega shaped resonator based sensor for industrial implementations," Physica E: Low-dimensional Systems and Nanostructures, Vol. 116, 2020.

12. Bakir, M., S. Dalgac, M. Karaaslan, F. Karadag, O. Akgol, E. Unal, T. Depci, C. Sabah, "A comprehensive study on fuel adulteration sensing by using triple ring resonator type metamaterial," Journal of the Electrochemical Society, Vol. 166, B1044-B1052, 2019.
doi:10.1149/2.1491912jes

13. Tumkaya, M. A., E. Unal, and C. Sabah, "Metamaterial-based fuel sensor application with three rhombus slots," International Journal of Modern Physics B, Vol. 33, 2019.

14. Islam, M. R., M. T. Islam, B. Bais, S. H. A. Almalki, and H. Alsaif, "Metamaterial sensor based on rectangular enclosed adjacent triple circle split ring resonator with good quality factor for microwave sensing application," Scientific Reports, Vol. 12, No. 1, 6792, 2022.
doi:10.1038/s41598-022-10729-4

15. Hamadou, B., R. Z. Falama, C. Delattre, G. Pierre, P. Dubessay, and P. Michaud, "Influence of physicochemical characteristics of neem seeds (Azadirachta indica A. Juss) on biodiesel production," Biomolecules, Vol. 10, 2020.

16. Madiwale, S. and V. Bhojwani, "An overview on production, properties, performance and emission analysis of blends of biodiesel," Procedia Technology, Vol. 25, 2016.