Vol. 115
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-03-06
Polarization Conversion and OAM Generation with a Single Transmitting Metasurface
By
Progress In Electromagnetics Research M, Vol. 115, 129-140, 2023
Abstract
We propose a transmission metasurface (TMS) with ultra-high polarization conversion properties and carrying orbital angular momentum (OAM) vortex waves based on Ku-band's unique periodic unit cell structure in Ku-band. The TMS periodic unit cell structure consists of four cascaded metal layers with parallel-stripe double-arrow and three dielectric layers. We theoretically explain the ultra-high polarization conversion properties of the periodic unit cell by introducing the Jones matrix. Meanwhile, the transmission loss of the periodic unit cell is less than 2.92 dB, and a phase shift of 2π is obtained in 17-19 GHz. We design OAM modes of ±1, ±2, and ±3 for 2π full-phase controlled TMSs by combining the multilayer cascade structure with the Pancharatnam-Berry (P-B) phase principle. The processed TMS produced a vortex wave with an OAM mode of +2 and achieved a polarization conversion rate (PCR) of 83.3% under left-hand circular polarization (LHCP) to right-hand circular polarization (RHCP) in agreement with the simulated and measured data. The results show that vortex waves also have the advantages of high efficiency, broadband, and high mode purity. The generated vortex waves are available for fast beam alignment, which is significant for unmanned aerial vehicles (UAVs) and satellite communications in the Ku band.
Citation
Zhong Yu, Li Shi, and Zhenghui Xin, "Polarization Conversion and OAM Generation with a Single Transmitting Metasurface," Progress In Electromagnetics Research M, Vol. 115, 129-140, 2023.
doi:10.2528/PIERM23012301
References

1. Edfors, O. and A. J. Johansson, "Is Orbital Angular Momentum (OAM) based radio communication an unexploited area?," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1126-1131, Feb. 2012.
doi:10.1109/TAP.2011.2173142

2. Morabito, A. F., L. Di Donato, and T. Isernia, "Orbital angular momentum antennas," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 59-67, Apr. 2018.
doi:10.1109/MAP.2018.2796445

3. Liu, K., X. Li, Y. Gao, H. Wang, and Y. Cheng, "Microwave imaging of spinning object using orbital angular momentum," Journal of Applied Physics, Vol. 122, No. 12, Art. No. 124903, Sep. 28, 2017.

4. Wang, J., K. Liu, Y. Cheng, and H. Wang, "Vortex SAR imaging method based on OAM beams design," IEEE Sensors Journal, Vol. 19, No. 24, 11873-11879, Dec. 15, 2019.
doi:10.1109/JSEN.2019.2937976

5. Barbuto, M., A. Alu, F. Bilotti, and A. Toscano, "Dual-circularly polarized topological patch antenna with pattern diversity," IEEE Access, Vol. 9, 48769-48776, 2021.
doi:10.1109/ACCESS.2021.3068792

6. Andersen, J. M., S. N. Alperin, A. A. Voitiv, W. G. Holtzmann, J. T. Gopinath, and M. E. Siemens, "Characterizing vortex beams from a spatial is light modulator with collinear phase-shifting holography," Applied Optics, Vol. 58, No. 2, 404-409, Jan. 10, 2019.
doi:10.1364/AO.58.000404

7. Tamagnone, M. C. Craeye, and J. Perruisseau-Carrier, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 11, 2012.
doi:10.1088/1367-2630/14/11/118001

8. Kaniewski, P., W. Komorniczak, C. Lesnik, et al. "S-band and Ku-band SAR system development for UAV-based applications," Metrology and Measurement Systems, Vol. 26, No. 1, 53-64, 2019.

9. Lv, Z. X., X. L. Qiu, Y. Cheng, S. T. Shangguan, F. F. Li, and C. B. Ding, "Multi-rotor UAV-borne PolInSAR data processing and preliminary analysis of height inversion in urban area," Remote Sensing, Vol. 14, No. 9, Art. No. 2161, May 2022.

10. Iqbal, M. N., M. F. M. Yusoff, M. K. A. Rahim, M. R. Hamid, Z. Johari, and H. U. Rahman, "A high gain and compact transmitarray antenna for Ku-band satellite communications," Electromagnetics, Vol. 41, No. 5, 331-343, Jul. 4, 2021.
doi:10.1080/02726343.2021.1962603

11. Abdulkarim, Y. I., L. Deng, H. N. Awl, et al. "Design of a broadband coplanar waveguide-fed antenna incorporating organic solar cells with 100% insolation for Ku band satellite communication," Materials (Basel), Vol. 13, No. 1, Art. No. 142, Dec. 30, 2019.

12. Isakov, D., Y. Wu, B. Allen, P. S. Grant, C. J. Stevens, and G. J. Gibbons, "Evaluation of the Laguerre-Gaussian mode purity produced by three-dimensional-printed microwave spiral phase plates," Royal Society Open Science, Vol. 7, No. 7, Art. No. 200493, Jul. 22, 2020.

13. Zhang, Y.-M. and J.-L. Li, "An orbital angular momentum-based array for in-band full-duplex communications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 417-421, Mar. 2019.
doi:10.1109/LAWP.2019.2893035

14. Xin, M., R. Xie, G. Zhai, et al. "Full control of dual-band vortex beams using a high-efficiency single-layer bi-spectral 2-bit coding metasurface," Optics Express, Vol. 28, No. 12, 17374-17383, Jun. 8, 2020.
doi:10.1364/OE.394571

15. Qin, F., S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, "A high-gain transmitarray for generating dual-mode OAM beams," IEEE Access, Vol. 6, 61006-61013, 2018.
doi:10.1109/ACCESS.2018.2875680

16. Iqbal, S., S. Liu, J. Luo, L. Zhang, H. A. Madni, and T. J. Cui, "Controls of transmitted electromagnetic waves for diverse functionalities using polarization-selective dual-band 2 bit coding metasurface," Journal of Optics, Vol. 22, No. 1, Art. No. 015104, Jan. 2020.

17. Iqbal, S., J. Luo, Q. Ma, et al. "Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces," Journal of Physics D - Applied Physics, Vol. 54, No. 3, Art. No. 035305, Jan. 21, 2021.

18. Shahmirzadi, A. V., Z. Badamchi, B. Badamchi, and H. Subbaraman, "Generating concentrically embedded spatially divided OAM carrying vortex beams using transmitarrays," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8436-8448, 2021.
doi:10.1109/TAP.2021.3090860

19. Shahmirzadi, A. V. and A. A. Kishk, "OAM carrying vortex beam mode interconversion using modular cascaded transmitarrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 7, 3591-3605, 2022.
doi:10.1109/TMTT.2022.3173748

20. Lv, H. H., Q. L. Huang, X. J. Yi, J. Q. Hou, and X. W. Shi, "Low-profile transmitting metasurface using single dielectric substrate for OAM generation," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 881-885, May 2020 (in English).
doi:10.1109/LAWP.2020.2983400

21. Bai, X. D., "High-efficiency transmissive metasurface for dual-polarized dual-mode OAM generation," Results in Physics, Vol. 18, Sep. 2020.

22. Akram, M. R., X. Bai, R. Jin, G. A. E. Vandenbosch, M. Premaratne, and W. Zhu, "Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4650-4658, 2019.
doi:10.1109/TAP.2019.2905777

23. Arbabi, A. and A. Faraon, "Fundamental limits of ultrathin metasurfaces," Scientific Reports, Vol. 7, 43722, Mar. 6, 2017.

24. Zhang, K., Y. Yuan, D. Zhang, et al. "Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region," Opt. Express, Vol. 26, No. 2, 1351-1360, Jan. 22, 2018.
doi:10.1364/OE.26.001351

25. Jiang, S., C. Chen, H. Zhang, and W. Chen, "Achromatic electromagnetic metasurface for generating a vortex wave with Orbital Angular Momentum (OAM)," Opt Express, Vol. 26, No. 5, 6466-6477, Mar. 5, 2018.
doi:10.1364/OE.26.006466

26. Bouchard, F., I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, "Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges," Applied Physics Letters, Vol. 105, No. 10, Art. No. 101905, Sep. 8, 2014.

27. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency," Journal of Applied Physics, Vol. 119, No. 6, 2016.

28. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 1, 396-400, 2017.
doi:10.1109/TAP.2016.2626722

29. Jack, B., M. J. Padgett, and S. Franke-Arnold, "Angular diffraction," New Journal of Physics, Vol. 10, No. 10, 2008.
doi:10.1088/1367-2630/10/10/103013

30. Lin, M., J. Yi, J. Wang, et al. "Single-layer re-organizable all-dielectric meta-lens platform for arbitrary transmissive phase manipulation at millimeter-wave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 2059-2069, Mar. 2022.
doi:10.1109/TAP.2021.3111163

31. Wang, Y., K. Zhang, Y. Yuan, et al. "Generation of high-efficiency vortex beam carrying OAM mode based on miniaturized element frequency selective surfaces," IEEE Transactions on Magnetics, Vol. 55, No. 10, 1-4, 2019.

32. Qin, F., R. Song, W. Cheng, and H. Zhang, "Multibeam OAM transmitarray with stable vortex property based on bifocal method," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1601-1605, Sep. 2021.
doi:10.1109/LAWP.2021.3084604

33. Wang, X., Y. Chen, S. Zheng, and X. Zhang, "Reconfigurable OAM antenna based on sub-wavelength phase modulation structure," IET Microwaves Antennas & Propagation, Vol. 12, No. 3, 354-359, Feb. 28, 2018.
doi:10.1049/iet-map.2017.0629

34. Wang, Y., K. Zhang, Y. Yuan, et al. "Planar vortex beam generator for circularly polarized incidence based on FSS," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1514-1522, Mar. 2020.
doi:10.1109/TAP.2019.2938666