1. Edfors, O. and A. J. Johansson, "Is Orbital Angular Momentum (OAM) based radio communication an unexploited area?," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1126-1131, Feb. 2012.
doi:10.1109/TAP.2011.2173142
2. Morabito, A. F., L. Di Donato, and T. Isernia, "Orbital angular momentum antennas," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 59-67, Apr. 2018.
doi:10.1109/MAP.2018.2796445
3. Liu, K., X. Li, Y. Gao, H. Wang, and Y. Cheng, "Microwave imaging of spinning object using orbital angular momentum," Journal of Applied Physics, Vol. 122, No. 12, Art. No. 124903, Sep. 28, 2017.
4. Wang, J., K. Liu, Y. Cheng, and H. Wang, "Vortex SAR imaging method based on OAM beams design," IEEE Sensors Journal, Vol. 19, No. 24, 11873-11879, Dec. 15, 2019.
doi:10.1109/JSEN.2019.2937976
5. Barbuto, M., A. Alu, F. Bilotti, and A. Toscano, "Dual-circularly polarized topological patch antenna with pattern diversity," IEEE Access, Vol. 9, 48769-48776, 2021.
doi:10.1109/ACCESS.2021.3068792
6. Andersen, J. M., S. N. Alperin, A. A. Voitiv, W. G. Holtzmann, J. T. Gopinath, and M. E. Siemens, "Characterizing vortex beams from a spatial is light modulator with collinear phase-shifting holography," Applied Optics, Vol. 58, No. 2, 404-409, Jan. 10, 2019.
doi:10.1364/AO.58.000404
7. Tamagnone, M. C. Craeye, and J. Perruisseau-Carrier, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 11, 2012.
doi:10.1088/1367-2630/14/11/118001
8. Kaniewski, P., W. Komorniczak, C. Lesnik, et al. "S-band and Ku-band SAR system development for UAV-based applications," Metrology and Measurement Systems, Vol. 26, No. 1, 53-64, 2019.
9. Lv, Z. X., X. L. Qiu, Y. Cheng, S. T. Shangguan, F. F. Li, and C. B. Ding, "Multi-rotor UAV-borne PolInSAR data processing and preliminary analysis of height inversion in urban area," Remote Sensing, Vol. 14, No. 9, Art. No. 2161, May 2022.
10. Iqbal, M. N., M. F. M. Yusoff, M. K. A. Rahim, M. R. Hamid, Z. Johari, and H. U. Rahman, "A high gain and compact transmitarray antenna for Ku-band satellite communications," Electromagnetics, Vol. 41, No. 5, 331-343, Jul. 4, 2021.
doi:10.1080/02726343.2021.1962603
11. Abdulkarim, Y. I., L. Deng, H. N. Awl, et al. "Design of a broadband coplanar waveguide-fed antenna incorporating organic solar cells with 100% insolation for Ku band satellite communication," Materials (Basel), Vol. 13, No. 1, Art. No. 142, Dec. 30, 2019.
12. Isakov, D., Y. Wu, B. Allen, P. S. Grant, C. J. Stevens, and G. J. Gibbons, "Evaluation of the Laguerre-Gaussian mode purity produced by three-dimensional-printed microwave spiral phase plates," Royal Society Open Science, Vol. 7, No. 7, Art. No. 200493, Jul. 22, 2020.
13. Zhang, Y.-M. and J.-L. Li, "An orbital angular momentum-based array for in-band full-duplex communications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 417-421, Mar. 2019.
doi:10.1109/LAWP.2019.2893035
14. Xin, M., R. Xie, G. Zhai, et al. "Full control of dual-band vortex beams using a high-efficiency single-layer bi-spectral 2-bit coding metasurface," Optics Express, Vol. 28, No. 12, 17374-17383, Jun. 8, 2020.
doi:10.1364/OE.394571
15. Qin, F., S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, "A high-gain transmitarray for generating dual-mode OAM beams," IEEE Access, Vol. 6, 61006-61013, 2018.
doi:10.1109/ACCESS.2018.2875680
16. Iqbal, S., S. Liu, J. Luo, L. Zhang, H. A. Madni, and T. J. Cui, "Controls of transmitted electromagnetic waves for diverse functionalities using polarization-selective dual-band 2 bit coding metasurface," Journal of Optics, Vol. 22, No. 1, Art. No. 015104, Jan. 2020.
17. Iqbal, S., J. Luo, Q. Ma, et al. "Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces," Journal of Physics D - Applied Physics, Vol. 54, No. 3, Art. No. 035305, Jan. 21, 2021.
18. Shahmirzadi, A. V., Z. Badamchi, B. Badamchi, and H. Subbaraman, "Generating concentrically embedded spatially divided OAM carrying vortex beams using transmitarrays," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8436-8448, 2021.
doi:10.1109/TAP.2021.3090860
19. Shahmirzadi, A. V. and A. A. Kishk, "OAM carrying vortex beam mode interconversion using modular cascaded transmitarrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 7, 3591-3605, 2022.
doi:10.1109/TMTT.2022.3173748
20. Lv, H. H., Q. L. Huang, X. J. Yi, J. Q. Hou, and X. W. Shi, "Low-profile transmitting metasurface using single dielectric substrate for OAM generation," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 881-885, May 2020 (in English).
doi:10.1109/LAWP.2020.2983400
21. Bai, X. D., "High-efficiency transmissive metasurface for dual-polarized dual-mode OAM generation," Results in Physics, Vol. 18, Sep. 2020.
22. Akram, M. R., X. Bai, R. Jin, G. A. E. Vandenbosch, M. Premaratne, and W. Zhu, "Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4650-4658, 2019.
doi:10.1109/TAP.2019.2905777
23. Arbabi, A. and A. Faraon, "Fundamental limits of ultrathin metasurfaces," Scientific Reports, Vol. 7, 43722, Mar. 6, 2017.
24. Zhang, K., Y. Yuan, D. Zhang, et al. "Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region," Opt. Express, Vol. 26, No. 2, 1351-1360, Jan. 22, 2018.
doi:10.1364/OE.26.001351
25. Jiang, S., C. Chen, H. Zhang, and W. Chen, "Achromatic electromagnetic metasurface for generating a vortex wave with Orbital Angular Momentum (OAM)," Opt Express, Vol. 26, No. 5, 6466-6477, Mar. 5, 2018.
doi:10.1364/OE.26.006466
26. Bouchard, F., I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, "Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges," Applied Physics Letters, Vol. 105, No. 10, Art. No. 101905, Sep. 8, 2014.
27. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency," Journal of Applied Physics, Vol. 119, No. 6, 2016.
28. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 1, 396-400, 2017.
doi:10.1109/TAP.2016.2626722
29. Jack, B., M. J. Padgett, and S. Franke-Arnold, "Angular diffraction," New Journal of Physics, Vol. 10, No. 10, 2008.
doi:10.1088/1367-2630/10/10/103013
30. Lin, M., J. Yi, J. Wang, et al. "Single-layer re-organizable all-dielectric meta-lens platform for arbitrary transmissive phase manipulation at millimeter-wave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 2059-2069, Mar. 2022.
doi:10.1109/TAP.2021.3111163
31. Wang, Y., K. Zhang, Y. Yuan, et al. "Generation of high-efficiency vortex beam carrying OAM mode based on miniaturized element frequency selective surfaces," IEEE Transactions on Magnetics, Vol. 55, No. 10, 1-4, 2019.
32. Qin, F., R. Song, W. Cheng, and H. Zhang, "Multibeam OAM transmitarray with stable vortex property based on bifocal method," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1601-1605, Sep. 2021.
doi:10.1109/LAWP.2021.3084604
33. Wang, X., Y. Chen, S. Zheng, and X. Zhang, "Reconfigurable OAM antenna based on sub-wavelength phase modulation structure," IET Microwaves Antennas & Propagation, Vol. 12, No. 3, 354-359, Feb. 28, 2018.
doi:10.1049/iet-map.2017.0629
34. Wang, Y., K. Zhang, Y. Yuan, et al. "Planar vortex beam generator for circularly polarized incidence based on FSS," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1514-1522, Mar. 2020.
doi:10.1109/TAP.2019.2938666