Vol. 115
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-02-22
Analysis of Moving Dielectric Half-Space with Oblique Plane Wave Incidence Using the Finite Difference Time Domain Method
By
Progress In Electromagnetics Research M, Vol. 115, 119-128, 2023
Abstract
We propose an original and detailed investigation of a moving dielectric half-space with oblique plane wave incidence, by using the Finite Difference Time Domain (FDTD) method. In our FDTD program, movements are implemented by changing positions of the interfaces at different time instants, through the classical FDTD time loop. With this ``brute-force'' approach, time is implicitly absolute, and Voigt-Lorentz transformations are not implemented. This technique is suitable for non-relativistic electromagnetic problems with moving bodies, thus for most encountered electromagnetic problems. We analyze the transmitted and reflected waves, for different speeds, different refractive indices, and different incidence angles. Based on the obtained results, we derive several analytical formulas for the reflection coefficients, transmission coefficients, Doppler frequency shifts, and angles of transmission and reflection. These formulas are validated by full-wave electromagnetic simulations and are in agreement with the literature. The electric field distribution obtained at time instants is also studied.
Citation
Mohammad Marvasti, and Halim Boutayeb, "Analysis of Moving Dielectric Half-Space with Oblique Plane Wave Incidence Using the Finite Difference Time Domain Method," Progress In Electromagnetics Research M, Vol. 115, 119-128, 2023.
doi:10.2528/PIERM23012204
References

1. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Taflove, A. and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 8, 623-630, 1975.
doi:10.1109/TMTT.1975.1128640

3. Reineix, A. and B. Jecko, "Analysis of microstrip patch antennas using finite difference time domain method," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 11, 1361-1369, 1989.
doi:10.1109/8.43555

4. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J.-A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 7, 849-857, 1990.
doi:10.1109/22.55775

5. Yee, K. S., D. Ingham, and K. Shlager, "Time-domain extrapolation to the far field based on FDTD calculations," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 3, 410-413, 1991.
doi:10.1109/8.76342

6. Rabbani, M. S., J. Churm, and A. P. Feresidis, "Fabry-Perot beam scanning antenna for remote vital sign detection at 60 GHz," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 6, 3115-3124, 2021.
doi:10.1109/TAP.2021.3049233

7. Chioukh, L., H. Boutayeb, D. Deslandes, and K. Wu, "Noise and sensitivity of harmonic radar architecture for remote sensing and detection of vital signs," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 9, 1847-1855, 2014.
doi:10.1109/TMTT.2014.2343934

8. Taravati, S. and A. A. Kishk, "Space-time modulation: Principles and applications," IEEE Microwave Magazine, Vol. 21, No. 4, 30-56, 2020.
doi:10.1109/MMM.2019.2963606

9. Kashaninejad-Rad, A., A. Abdolali, and M. M. Salary, "Interaction of electromagnetic waves with a moving slab: Fundamental dyadic method," Progress In Electromagnetics Research B, Vol. 60, 2014.

10. Stolyarov, S., "Reflection and transmission of electromagnetic waves incident on a moving dielectric slab," Radiophysics and Quantum Electronics, Vol. 10, No. 2, 151-153, 1967.
doi:10.1007/BF01040984

11. Yeh, C. and K. Casey, "Reflection and transmission of electromagnetic waves by a moving dielectric slab," Physical Review, Vol. 144, No. 2, 665, 1966.
doi:10.1103/PhysRev.144.665

12. Yeh, C., "Propagation along moving dielectric wave guides," JOSA, Vol. 58, No. 6, 767-770, 1968.
doi:10.1364/JOSA.58.000767

13. Yeh, C., "Brewster angle for a dielectric medium moving at relativistic speed," Journal of Applied Physics, Vol. 38, No. 13, 5194-5200, 1967.
doi:10.1063/1.1709301

14. Pelosi, G., R. Coccioli, and R. Graglia, "A finite-element analysis of electromagnetic scattering from a moving dielectric cylinder of arbitrary cross section," Journal of Physics D: Applied Physics, Vol. 27, No. 10, 2013, 1994.
doi:10.1088/0022-3727/27/10/004

15. Harfoush, F., A. Taflove, and G. A. Kriegsmann, "A numerical technique for analyzing electromagnetic wave scattering from moving surfaces in one and two dimensions," IEEE Trans. on Ant. and Propag., Vol. 37, No. 1, 55-63, 1989.
doi:10.1109/8.192164

16. Inman, M. J., A. Z. Elsherbeni, and C. Smith, "Finite difference time domain simulation of moving objects," Proc. of IEEE Radar Conf., 439-445, 2003.

17. Zheng, K., X. Liu, Z. Mu, and G. Wei, "Analysis of scattering elds from moving multilayered dielectric slab illuminated by an impulse source," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2130-2133, 2017.
doi:10.1109/LAWP.2017.2700038

18. Zheng, K.-S., J.-Z. Li, G. Wei, and J.-D. Xu, "Analysis of doppler effect of moving conducting surfaces with lorentz-fdtd method," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 2, 149-159, 2013.
doi:10.1080/09205071.2013.741042

19. Liu, Y., K. Zheng, Z. Mu, and X. Liu, "Reflection and transmission coefficients of moving dielectric in half space," 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), IEEE, 485-487, 2016.
doi:10.1109/ISAPE.2016.7834032

20. Zheng, K., Z. Mu, H. Luo, and G. Wei, "Electromagnetic properties from moving dielectric in high speed with lorentz-fdtd," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 934-937, 2015.

21. Li, Y., K. Zheng, Y. Liu, and L. Xu, "Radiated fields of a high-speed moving dipole at oblique incidence," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), IEEE, 1-2, 2017.

22. Zheng, K., Y. Li, X. Tu, and G. Wei, "Scattered fields from a three-dimensional complex target moving at high speed," 2018 International Applied Computational Electromagnetics Society Symposium-China (ACES), IEEE, 1-2, 2018.

23. Zheng, K., Y. Li, L. Xu, J. Li, and G. Wei, "Electromagnetic properties of a complex pyramid-shaped target moving at high speed," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7472-7476, 2018.
doi:10.1109/TAP.2018.2872164

24. Zheng, K., Y. Li, S. Qin, K. An, and G. Wei, "Analysis of micromotion characteristics from moving conical-shaped targets using the lorentz-fdtd method," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 11, 7174-7179, 2019.
doi:10.1109/TAP.2019.2927625

25. Boutayeb, H., "Numerical methods in electromagnetism: Finite difference time domain method, part 1,", DOI: http://dx.doi.org/10.13140/2.1.1247.3604 10.13140/2.1.1247.3604.