Vol. 109
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-03-08
Design of a W-Band Dual-Circular-Polarization Monopulse Cassegrain Antenna for Polarization Detection of Radar Target
By
Progress In Electromagnetics Research Letters, Vol. 109, 93-101, 2023
Abstract
A W-band dual-circular-polarization (dual-CP) monopulse Cassegrain antenna for polarization detection of radar target is presented in this letter. The proposed antenna consists of a main reflector, a sub reflector, a dual-CP feed source based on the septum polarizer, and a comparator. Two orthogonal circular-polarized signals [left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP)] electromagnetic wave can be transmitted and received simultaneously by this antenna. The principle of the antenna is introduced and analyzed, and then a prototype of the antenna is simulated, fabricated, and measured. Measured results are in good agreement with the simulated ones. At 94 GHz, the gains of the LHCP and the RHCP sum beam (SUM beam) are 38.6 dBi and 38.8 dBi counting the insertion loss of the comparator, which indicates that the radiation efficiency is better than 44.2%. The 3-dB beamwidth is about 1.5° with a sidelobe level (SLL) of -16.6 dB, and the axial ratio is lower than 1.43. A null depth of -26 dB for the difference beam (DIFF beam) is observed, and the gain ratio between the LHCP monopulse beams is 5.9 dB. Measured results demonstrate that the proposed antenna is very applicable in the polarization detection of radar target at W-band.
Citation
Xin Li, Kun Gao, Ying-Chao Zhao, Jian Yuan, Jie Cheng, and Yuan-Yuan Wang, "Design of a W-Band Dual-Circular-Polarization Monopulse Cassegrain Antenna for Polarization Detection of Radar Target," Progress In Electromagnetics Research Letters, Vol. 109, 93-101, 2023.
doi:10.2528/PIERL23011203
References

1. Aboserwal, N., J. L. Salazar-Cerreno, and Z. Qamar, "An ultra-compact X-band dual-polarized slotted waveguide array unit cell for large E-scanning radar systems," IEEE Access, Vol. 8, 210651-210662, 2020.
doi:10.1109/ACCESS.2020.3038485

2. Wang, Y. and V. Chandrasekar, "Polarization isolation requirements for linear dual-polarization weather radar in simultaneous transmission mode of operation," IEEE Trans. Geoscience and Remote Sensing, Vol. 44, 2019-2028, 2006.
doi:10.1109/TGRS.2006.872138

3. Lv, J., M. Su, and Y. Liu, "Broadband dual-polarized mm-Wave antenna array with grating structure for mobile devices," IEEE Trans. Antennas Propagat., Vol. 22, 273-277, 2023.
doi:10.1109/LAWP.2022.3208908

4. Giuli, D., "Polarization diversity in radars," Proceedings of the IEEE, Vol. 74, 245-269, 1986.
doi:10.1109/PROC.1986.13457

5. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geoscience and Remote Sensing, Vol. 34, 498-518, 1996.
doi:10.1109/36.485127

6. Yin, J., H. Chen, Y. Li, and X. Wang, "Clutter mitigation based on spectral depolarization ratio for dual-polarization weather radars," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, 6131-6145, 2021.
doi:10.1109/JSTARS.2021.3088324

7. Shen, Y., S. G. Zhou, G. L. Huang, and T. H. Chio, "A compact dual circularly polarized microstrip patch array with interlaced sequentially rotated feed," IEEE Trans. Antennas Propagat., Vol. 64, 4933-4936, 2016.
doi:10.1109/TAP.2016.2600747

8. Cheng, Y. J., J. Wang, and X. L. Liu, "94 GHz substrate integrated waveguide dual-CP shared- aperture parallel-plate long-slot array antenna with low sidelobe level," IEEE Trans. Antennas Propagat., Vol. 65, 5855-5861, 2017.
doi:10.1109/TAP.2017.2754423

9. Shu, C., J. B. Wang, S. Q. Hu, Y. Yao, J. S. Yu, Y. Alfadhl, and X. D. Chen, "Wideband dual-CP horn antenna for mmWave wireless communications," IEEE Antennas Wireless Propag. Lett., Vol. 18, 1726-1730, 2019.
doi:10.1109/LAWP.2019.2927933

10. Dong, Y., R. Xu, Y. H. Yang, and S. G. Zhou, "Compact shared-aperture dual-band dual-circularly-polarized waveguide antenna array operating at K/Ka-band," IEEE Trans. Antennas Propagat., Vol. 71, 443-449, 2023.
doi:10.1109/TAP.2022.3213425

11. Mahmoud, A. E., W. Hong, Y. Zhang, and A. Kishk, "W-band multilayer perforated dielectric substrate lens," IEEE Antennas Wireless Propag. Lett., Vol. 13, 734-737, 2014.
doi:10.1109/LAWP.2014.2316144

12. Lorencio, R., J. A. Encinar, R. R. Boix, M. Barba, and G. Toso, "Flat reflectarray that generates adjacent beams by discriminating in dual circular polarization," IEEE Trans. Antennas Propagat., Vol. 67, 3733-3742, 2019.
doi:10.1109/TAP.2019.2905676

13. Xu, P., L. Li, R. Li, and H. Liu, "Dual-circularly polarized spin-decoupled reflectarray with FSS-back for independent operating at Ku-/Ka-bands," IEEE Trans. Antennas Propagat., Vol. 69, 7041-7046, 2021.
doi:10.1109/TAP.2021.3076518

14. Kou, P. F. and Y. J. Cheng, "A dual circular-polarized extremely thin monopulse feeder at W-band for prime focus reflector antenna," IEEE Antennas Wireless Propag. Lett., Vol. 18, 231-235, 2019.
doi:10.1109/LAWP.2018.2886905

15. Zheng, P., G. Q. Zhao, S. H. Xu, F. Yang, and H. J. Sun, "Design of a W-band full-polarization monopulse Cassegrain antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 99-103, 2017.
doi:10.1109/LAWP.2016.2558285

16. Zheng, P., B. Hu, S. Xu, and H. Sun, "A W-band high-aperture-efficiency multipolarized monopulse Cassegrain antenna fed by phased microstrip patch quad," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1609-1613, 2017.
doi:10.1109/LAWP.2017.2653840

17. Volakis, J., Antenna Engineering Handbook, 4th Ed., McGraw-Hill, New York, NY, USA, 2007.