Vol. 98
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-02-10
A Miniaturized Antenna for Breast Cancer Detection at the 5.72-5.82 GHz ISM Band Based on the DGS Technique
By
Progress In Electromagnetics Research B, Vol. 98, 87-105, 2023
Abstract
This paper presents an alternative solution for detecting breast cancer through planar antennas. The designed antenna electric parameters are the best gain for tiny radiation elements, along with the suitable characteristic impedance and bandwidth focusing on a specific application. Antennas are deployed nowadays to provide access to the detection of malignant tumors. That solution coexists with those in the hospitals (X-ray Mammography, Biopsy, Ultrasound, and Tomography), as breast cancer is a worldwide health concern because many women die yearly. Unfortunately, none of these methods are efficient as microwave imaging techniques. In terms of rapidity, efficiency, sensitivity, and accuracy, a small microstrip patch antenna operating at the Industrial, Scientific, Medical (ISM) band (5.72-5.82 GHz) is proposed in this paper for early breast tumor screening. Designed from the High-Frequency Structure Simulator (HFSS), the rectangular microstrip patch-antenna of 12x12x1 mm3, etched on an FR4 HTG-175 dielectric material (relative permittivity of 4.4 and 0.02 of loss tangent) has been simulated, prototyped, and experimentally measured with ZVA50 Vector Network Analyzer (VNA). The defective ground structure technique has been used to achieve the goals of the final prototype. The proposed antenna has 51.22 dB of return loss, 230 MHz of bandwidth, with a radiation efficiency of 82% and a gain of 1.45 dBi at the resonance frequency of 5.73 GHz. Simulation results have been well-concluded through different tumor positions on the breast to take comprehensive precautions. Furthermore, a comparison with other antenna designs has been made. Due to the available laboratory equipment, the suggested work focused on the research part.
Citation
Lala Aicha El Vadel, Dominic Bernard Onyango Konditi, and Franck Moukanda Mbango, "A Miniaturized Antenna for Breast Cancer Detection at the 5.72-5.82 GHz ISM Band Based on the DGS Technique," Progress In Electromagnetics Research B, Vol. 98, 87-105, 2023.
doi:10.2528/PIERB23011004
References

1. Sugitani, T., S. Kubota, S. Kuroki, et al. "Complex permittivities of breast tumor tissues obtained from cancer surgeries," Appl. Phys. Lett., Vol. 104, No. 25, Jun. 2014.
doi:10.1063/1.4885087

2. Fear, E. C., "Microwave imaging of the breast," Technol. Cancer Res. Treat., Vol. 4, No. 1, 69-82, Jun. 2005.
doi:10.1177/153303460500400110

3. Sarestoniemi, M., J. Reponen, M. Sonkki, et al. "Breast cancer detection feasibility with UWB flexible antennas on wearable monitoring vest," 2022 IEEE Int. Conf. Pervasive Comput. Commun., Work. other Affil. Events, PerCom Work, 751-756, 2022.
doi:10.1109/PerComWorkshops53856.2022.9767512

4. Srinivasan, D. and M. Gopalakrishnan, "Breast cancer detection using adaptable textile antenna design," J. Med. Syst., Vol. 43, No. 6, 1-10, 2019.
doi:10.1007/s10916-019-1314-5

5. Bhavani, S., "Wearable microstrip circular patch antenna for breast cancer detection," IEEE International Symposium on Antennas and Propagation and USNC-URSI, 1273-1274, 2021.

6. Bohra, S. and T. Shaikh, "UWB microstrip patch antenna for breast," Int. J. Adv. Res. Electron. Commun. Eng., Vol. 5, No. 1, 1-13, 2016.

7. Gupta, N. P., P. K. Malik, and B. S. Ram, "A review on methods and systems for early breast cancer detection," Proc. Int. Conf. Comput. Autom. Knowl. Manag, ICCAKM 2020, 42-46, Jan. 2020.

8. Rao, P. K. and R. Mishra, "Ultra-wide-band flexible antenna for breast cancer detection," 2019 IEEE 5th Int. Conf. Converg. Technol. I2CT 2019, Vol. 5880, 5-8, 2019.

9. Kumar, V., H. V. Kumar, and T. S. Nagaveni, "Design of microstrip patch antenna to detect breast cancer analysis of hyperspectral images view project design of microstrip patch antenna to detect breast cancer," Artic. ICTACT J. Microelectron., 2, 2020.

10. Ouerghi, K., N. Fadlallah, A. Smida, R. Ghayoula, J. Fattahi, and N. Boulejfen, "Circular antenna array design for breast cancer detection," 2017 Sensors Networks Smart Emerg. Technol. SENSET 2017, Vol. 2017-Janua, 1-4, Nov. 2017.

11. Mansoor, F., T. Tan, and S. I. Latif, "The performance of an ultra-wideband elliptical ring monopole antenna with a humanoid breast phantom," 2017 IEEE Antennas Propag. Soc. Int. Symp. Proc., Vol. 2017-Janua, 105-106, 2017.

12. Islam, R., F. Mahbub, S. Abdul Kadir Al-Nahiun, S. Banerjee Akash, R. Rashidul Hasan, and M. Abdur Rahman, "Design of an on-body rectangular microstrip patch antenna for the diagnosis of breast cancer using S-band," Lect. Notes Networks Syst., Vol. 216, 1033-1044, 2022.
doi:10.1007/978-981-16-1781-2_89

13. Sinha, S., T. S. R. Niloy, R. R. Hasan, M. A. Rahman, and S. Rahman, "A wearable microstrip patch antenna for detecting brain tumor," Proc. Int. Conf. Comput. Autom. Knowl. Manag, ICCAKM 2020, 85-89, Jan. 2020.

14. Porter, E., J. Fakhoury, R. Oprisor, M. Coates, and M. Popovic, "Improved tissue phantoms for experimental validation of microwave breast cancer detection," EuCAP 2010 --- 4th Eur. Conf. Antennas Propag., 2-7, 2010.

15. Moukala Mpele, P., F. Moukanda Mbango, D. B. O. Konditi, and F. Ndagijimana, "A novel quadband ultra miniaturized planar antenna with metallic vias and defected ground structure for portable devices," Heliyon, Vol. 7, No. 3, e06373, 2021.
doi:10.1016/j.heliyon.2021.e06373

16. Moukala Mpele, P., F. Moukanda Mbango, D. B. O. Konditi, and F. Ndagijimana, "A tri-band and miniaturized planar antenna based on countersink and defected ground structure techniques," Int. J. RF Microw. Comput. Eng., Vol. 31, No. 5, 1-12, 2021.

17. Bamy, C. L., F. Moukanda Mbango, D. B. O. Konditi, and P. Moukala Mpele, "A compact dual- band Dolly-shaped antenna with parasitic elements for automotive radar and 5G applications," Heliyon, Vol. 7, No. 4, e06793, 2021.
doi:10.1016/j.heliyon.2021.e06793

18. Borja, B., J. A. Tirado, and H. Jardon, "An overview of UWB antennas for microwave imaging systems for cancer detection purposes," Progress In Electromagnetics Research B, Vol. 80, 173-198, 2018.
doi:10.2528/PIERB18030302

19. Liu, H., X. Shang, and X. Ye, "Breast cancer detection using synthetic aperture radar imaging and distorted born iterative method," 2018 Int. Appl. Comput. Electromagn. Soc. Symp. China, ACES-China 2018, 1-2, 2019.

20. Doerry, A., "Basics of polar-format algorithm for processing synthetic aperture radar images," Sandia Natl. Lab. Rep. SAND2012-3369, , [Online], available: http://www.academia.edu/download/30537796/PFA_SANDIA.pdf.

21. Abbasi, M., A. Shayei, M. Shabany, and Z. Kavehvash, "Fast Fourier-based implementation of synthetic aperture radar algorithm for multistatic imaging system," IEEE Trans. Instrum. Meas., Vol. 68, No. 9, 3339-3349, 2019.
doi:10.1109/TIM.2018.2875769

22. Oloumi, D., R. S. C. Winter, A. Kordzadeh, P. Boulanger, and K. Rambabu, "Microwave imaging of breast tumor using time-domain UWB circular-SAR technique," IEEE Trans. Med. Imaging, Vol. 39, No. 4, 934-943, 2020.
doi:10.1109/TMI.2019.2937762

23. Pisa, S., E. Pittella, and E. Piuzzi, "A survey of radar systems for medical applications," IEEE Aerosp. Electron. Syst. Mag., Vol. 31, No. 11, 64-81, 2016.
doi:10.1109/MAES.2016.140167

24. Syed, A., M. Sheikh, M. T. Islam, and H. Rmili, "Metamaterial-loaded 16-printed log periodic antenna array for microwave imaging of breast tumor detection," Int. J. Antennas Propag., Vol. 2022, 2022.

25. Salimitorkamani, M., M. Mehranpour, and H. Odabasi, "A compact ultrawideband slotted patch antenna for early stage breast tumor detection applications," Int. J. Microw. Wirel. Technol., 1-9, 2022.
doi:10.1017/S1759078722000861

26. Slimi, M., B. Jmai, H. Dinis, and A. Gharsallah, "Microwave imaging for breast tumor detection using a CPW antenna," Indian J. Sci. Technol., Vol. 15, No. 13, 554-560, 2022.
doi:10.17485/IJST/v15i13.1974

27. AlOmairi, A. and D. C. Atilla, "Ultra-wide-band microstrip patch antenna design for breast cancer detection," Electrica, Vol. 22, No. 1, 41-51, Dec. 2021.
doi:10.5152/electrica.2021.21053

28. Ponnapalli, V. L. N. P., S. Karthikeyan, and J. L. Narayana, "A circular slotted shaped UWB monopole antenna for breast cancer detection,", Vol. 104, 57-65, 2022.

29. Serria, E. A. and M. I. Hussein, "Implications of metamaterial on ultra-wide band microstrip antenna performance," Crystals, Vol. 10, No. 8, 1-24, 2020.
doi:10.3390/cryst10080677