Vol. 98
Latest Volume
All Volumes
PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-02-07
Theoretical Study of Electromagnetic Field, Diffracted by Two Slots in a Conducting Screen
By
Progress In Electromagnetics Research B, Vol. 98, 77-86, 2023
Abstract
A rigorous solution is presented for description of the plane electromagnetic wave diffraction by two parallel slots in a perfectly conducting screen of finite thickness, placed before a dielectric layer, operating as a receiver of radiation in the near zone. The field in this layer is studied for the case of small obstacle dimensions being of the order of the wavelength. It is shown that the best spatial resolution of images from two slots in a dielectric layer is reached together with their optimal focusing, which can be determined by the method proposed earlier for one-slot diffraction.
Citation
Vladimir Serdyuk, "Theoretical Study of Electromagnetic Field, Diffracted by Two Slots in a Conducting Screen," Progress In Electromagnetics Research B, Vol. 98, 77-86, 2023.
doi:10.2528/PIERB23010504
References

1. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 12, 667-669, 1998.
doi:10.1038/35570

2. Toma, A., S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. P. Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, "Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots," Nano Lett., Vol. 15, No. 1, 386-391, 2015.
doi:10.1021/nl503705w

3. Mack, C., Fundamental Principles of Optical Lithography: The Science of Microfabrication, Wiley, Chichester, 2007.
doi:10.1002/9780470723876

4. Born, M. and E. Wolf, Principles of Optics, University Press, Cambridge, 1997.

5. Garcia-Vidal, F. G., L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Reviews of Modern Physics, Vol. 82, No. 1, 729-787, 2010.
doi:10.1103/RevModPhys.82.729

6. Serdyuk, V. M., "Diffraction of a plane electromagnetic wave by a slot in a conducting screen of arbitrary thickness," Technical Physics, Vol. 50, No. 8, 1076-1083, 2005.
doi:10.1134/1.2014542

7. Serdyuk, V. M., S. V. von Gratowski, and V. V. Koledov, "Diffraction focusing of electromagnetic radiation by transmission through sub-wavelength nanoapertures," Semiconductors, Vol. 54, No. 14, 1814-1815, 2020.
doi:10.1134/S1063782620140250

8. Landau, L. D. and E. M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), Pergamon Press, Oxford, 1991.

9. Serdyuk, V. M., "Method of additive regularization of field integrals in the problem of electro- magnetic diffraction by a slot in a conducting screen, placed before a dielectric layer," Progress In Electromagnetics Research B, Vol. 83, 129-151, 2019.
doi:10.2528/PIERB18102906

10. Serdyuk, V. M., "Theoretical investigation of electromagnetic diffraction focusing in the near zone of a sub-wavelength aperture," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 50, 101017, 2022.
doi:10.1016/j.photonics.2022.101017

11. Gordon, R., "Near-field interference in a subwavelength double slit in a perfect conductor," J. Opt. A: Pure Appl. Opt., Vol. 8, L1-L3, 2006.
doi:10.1088/1464-4258/8/6/L01

12. Sokolov, A. V., Optical Properties of Metals, American Elsevier Publishing, 1967.

13. Nye, J. F. and W. Liang, "Near-field diffraction by two slits in a black screen," Proc. Royal Soc. A Mathematical Physical and Engineering Sciences, Vol. 454, No. 1974, 1635-1658, 1998.
doi:10.1098/rspa.1998.0224