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Theoretical Study of Electromagnetic Field, Diffracted by Two Slots
in a Conducting Screen

Vladimir M. Serdyuk*

Abstract—A rigorous solution is presented for description of the plane electromagnetic wave diffraction
by two parallel slots in a perfectly conducting screen of finite thickness, placed before a dielectric layer,
operating as a receiver of radiation in the near zone. The field in this layer is studied for the case
of small obstacle dimensions being of the order of the wavelength. It is shown that the best spatial
resolution of images from two slots in a dielectric layer is reached together with their optimal focusing,
which can be determined by the method proposed earlier for one-slot diffraction.

1. INTRODUCTION

Since the beginning of the new century, there has been a renaissance of interest in the problem of
electromagnetic diffraction by a slot in a conducting screen. It is caused by the discovery of the
phenomenon of an anomalously high energy concentration of the diffraction field in the near zone of
subwavelength apertures [1], i.e., of small apertures with the dimensions of the order of or smaller than
the radiation wavelength, and the slot can serve as the simplest model of a two-dimensional aperture.
Great interest in such effects is due to the possibility of local exposure of the field on small areas
of the irradiated material and their application in spectroscopy [2] and in the technology of optical
lithography [3]. Unfortunately, here the theory lags far behind experiment and practical demands.
Until now, for explaining the phenomenon of slot diffraction, approximate methods [4, 5] have been
used, and they are suitable for optical problems with large sizes of diffraction obstacles in comparison
with the wavelength, but they are not applicable for description of fields in the near zone of small
slot apertures. With their help, at best, it was possible to estimate the integral intensity of the total
field behind the slot, but such theoretical methods are not suitable for a detailed analysis of its spatial
structure in the near zone. Such an analysis can be carried out only on the basis of a rigorous solution
of the problem of electromagnetic wave diffraction by a slot [6]. Moreover, considering diffraction by
subwavelength objects, one needs to take into account the distorting effect of the dielectrics under test
themselves, which play the role of electromagnetic radiation receivers, for example, of the material under
study in spectroscopy or the photoresist in the lithographic process [7]. There is an analogy between
the classical electromagnetic theory and quantum mechanics, where the back action of the measuring
device on the objects under study (particles and fields) cannot be neglected [8]. Therefore, for studying
the spatial structure of the field in the near zone of a small aperture, it is necessary to apply a rigorous
solution of the diffraction problem for a slot in a conducting screen, taking into account the presence of
a plane dielectric layer on a substrate behind the screen as the simplest model of an irradiated dielectric.
However, the construction of such a solution is complicated, because here we should consider resonance
phenomena in the dielectric layer, which causes the excitation of waveguide modes. Nevertheless, such
a solution was recently constructed [9], and it served as the bases for the study of the spatial pattern of
the field in a thin film at the near diffraction zone of a simple slot structure [7, 10]. It turned out that
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one more anomalous aperture effect can manifest itself, namely, the lensless focusing of electromagnetic
radiation by a slot in a perfectly conducting screen, when the effective size of the light diffraction spot
in the dielectric from the slot is 1.5–2, or even 2.5 times smaller than the size of the slot itself. However,
this effect can occur in the near zone and only for certain dimensions of the diffraction scheme, if these
dimensions turn out to be of the order of the wavelength of the incident radiation. For estimation of
the quality of the diffraction slot image, i.e., a light spot in a dielectric, and for determining the region
of existence of this effect, a theoretical method was proposed in [10], which reduces to the calculation of
just one dimensionless scalar value, the so-called electric energy focusing parameter in a thin dielectric
film. It shows how many times the effective width of the diffraction slot image is less than the width
of the slot itself. At small values of this parameter, a strong divergence of the image takes place, but
when its value reaches values of the order of 2 or more, the effect of focusing appears. For wide slots,
the image quality can further deteriorate due to the nonuniform distribution of energy along the profile,
and here, it is necessary to introduce additional values in order to characterize quality of its uniformity.
However, for narrow slots of the order of a wavelength, a well-focused image usually has a monotone
profile without intensity jumps, and therefore only one focusing parameter is sufficient to estimate the
quality of their images.

In addition, for optical lithography, as well as for spectroscopy, another property of diffraction
images is of great importance. It is spatial resolution under conditions of close position of several
apertures [3]. Obviously, at good focusing of close images, they should not meet and produce noticeable
exposure in the area between the slots behind the screen. However, taking into account the non-trivial
nature of the interference phenomenon, this conclusion requires demonstrative confirmation. Therefore,
in this paper, we consider a rigorous solution of the diffraction problem for two closely spaced slots
in a conducting screen and use it to study the conditions for optimal focusing and spatial resolution
of the diffraction images of these slots in a thin dielectric layer behind the screen. A similar problem
was solved before, say, in the work [11], which clearly shows the shortcomings and contradictions of
the traditional optical approach to small apertures. The premise of this paper is to specify the field
on a very narrow slot in the form of one fundamental slot mode, and then calculate the field in the
rest of the space. Meanwhile, the field on the slot is initially unknown, and in order to determine it
adequately, one has to consider the expansion of this field in sinusoidal slot modes, most of which decay
in the direction normal to the slot and screen boundaries. In this case, the truth of the total diffraction
solution can be validated theoretically only in one way: by testing the accuracy of the fulfillment of the
boundary conditions for the fields on both sides of the boundaries of the slots and conducting screens.
If the boundary conditions are satisfied with the required accuracy, then the solution of the diffraction
problem is correct, but if not, then there are serious reasons to doubt the truth of all the results
of theoretical study. The accuracy of fulfillment of the boundary conditions directly depends on the
number of modes inside and outside the slot taking into consideration in the solution. For example, for
slots with a width of the order of a wavelength, the minimum relative error of fulfilling these conditions
on the order of 0.01–0.001 is achieved if one considers 100 sinusoidal slot modes, almost all of which
are decaying, and with decrease in the width of the slots, the number of required modes only increases.
Thus, limiting ourselves to one or two modes of a small slot of a simple form, it is impossible to obtain
a reasonable solution of the diffraction problem that will satisfy the boundary conditions in the near
zone, and therefore the application of such a solution in this zone turns out to be illegal.

2. SOLUTION OF DIFFRACTION PROBLEM

Let us consider a stationary two-dimensional problem of diffraction of a plane electromagnetic wave by
two slots in a perfectly conducting screen of finite thickness. And at a certain distance H behind the
screen, a plane dielectric layer is placed on a substrate (Fig. 1). The thickness of the latter is usually
very large and has little effect on the nature of the solution for the field in the layer, and therefore the
assumption of an unlimited thickness of the substrate will not be erroneous. Let the plane of incidence
of the diffracting wave coincide with the coordinate plane xy, which is orthogonal to the z axis parallel
to the infinite edges of the slots. In this case, Maxwell’s equations allow the separation of the field into
two different polarizations H and E (in optics they are usually denoted as TE and TM) [4, 12], each of
which is determined by an independent complex scalar function u(x,y) of two coordinates x and y. In
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Figure 1. Geometry of the problem for two slots diffraction system.

this case, the spatial components of the electric and magnetic vectors of each polarization are expressed
in terms of this function as follows [4, 9]:{
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where k = ω/c is the wavenumber; ω is the circular frequency of the field; c is the speed of light; ε(x) is
the piecewise constant function and equals to the unite in empty space and the dielectric permittivity
ε or εs of a dielectric inside that. The upper symbols in the left sides of Eq. (1) refer to H polarization,

and the lower symbols correspond to E polarization. i = (−1)1/2 is the imaginary unite. The right-
hand sides of Eq. (1) contain different values for different polarizations, since for them the values of
the functions u at the same points in space differ from each other due to differences in the boundary
conditions. In Eq. (1), as well as everywhere below, the exponential factor exp(−iωt), determining the
dependence of stationary fields on time t, is omitted.

The boundary conditions for the fields are reduced to the well-known requirements of the continuity
of the tangential components of the electric and magnetic vectors at the boundaries between different
dielectrics and the vanishing of the tangential components of the electric field on a perfectly conducting
surface [4, 11]. According to Eq. (1), at the boundaries of the dielectric layer, we have:

(u)x=d+H−0 = εν(u)x=d+H+0 ; εν(u)x=d+H+h−0 = ενs(u)x=d+H+h+0; (2a)

(∂u/∂x)x=d+H−0 = (∂u/∂x)x=d+H+0 ; (∂u/∂x)x=d+H+h−0 = (∂u/∂x)x=d+H+h+0, (2b)

where ν is zero for H polarization and ν = 1 for E polarization, and the symbol “0” denotes an
infinitesimal positive value. Taking into account the presence of two slots, the boundary conditions at
the screen boundaries x = −d and x = d are formulated as follows:

(1− ν)(u)x=∓d + ν(∂u/∂x)x=∓d = 0 for y ≤ −L− l1;−L+ l1 ≤ y ≤ L− l2; y ≥ L+ l2 (3)

directly on a perfectly conducting surface, and

(u)x=∓d−0 = (u)x=∓d−0

(∂u/∂x)x=∓d−0 = (∂u/∂x)x=∓d−0

}
for − L− l1 < y < −L+ l1; L− l2 < y < L+ l2 , (4)

where there is no conductor. In addition, similar conditions must be satisfied on the inner walls of the
slots:

(1− ν)(u) + ν(∂u/∂y) = 0 for y = −L± l1 or y = L± l2, when − d ≤ x ≤ d. (5)

We will solve the problem using the eigenmodes method. Let us divide the entire space of field
distribution into 5 various homogeneous regions of simple geometry, indicated by numbers in Fig. 1.

Let the incident plane wave have the form:

u0(x, y) = exp { ik [α0(x+ d) + β0y]} , (6)
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where α0 = cosϑ and β0 = sinϑ are the parameters of wave propagation along the axes x and y, and
ϑ is the angle of wave incidence on the surface of a screen. Then, in region 1 in front of the screen
(at x ≤ −d), we can write the following representation for the field as an expansion in the continuous
spectrum of plane wave modes:

u1(x, y) = {exp[ikα0(x+ d)]− (−1)ν exp[−ikα0(x+ d)]} exp(ikβ0y)

+(−1)ν
∫ +∞

−∞
α−νB(β) exp[−ikα(x+ d) + ikβy]dβ, (7)

where B(β) are the unknown mode amplitudes. Here, the incident wave (6) and the wave reflected
from the screen are separated explicitly, and the diffraction field is written as a Fourier integral over
plane waves, where the factor exp[−ikα(x + d)] is added to each plane-wave component. It describes
the propagation of this component in the half-space x < −d and ensures satisfaction of the Helmholtz
equation [4, 11], if we set

α =
√

1− β2. (8)

In order for the field (7) not to increase with distance from the screen, it is necessary to choose a branch
of the square root (8) with a non-negative imaginary part.

In the regions behind the screen, the fields are also represented as Fourier integrals with respect to
the tangential propagation parameter β. For all three areas, these fields can be written in the form of
a general formula:

um(x, y) =

∫ +∞

−∞

fm(β, x)

D(β)
A(β) exp (ikβy) dβ , (9)

where m is the index (number) of the region of field propagation (m = 3; 4; 5);

f3(β, x) = α−ν
[
D0(β)e

ikα(x−d) +R(β)eikα(2H+d−x)
]
;

f4(β, x) = α−νT34(β)
[
eikγ(x−H−d) +R45(β)e

ikγ(2h+H+d−x)
]
eikαH ;

f5(β, x) = α−νT34(β)T45(β)e
ikγh exp [ikγs(x− h− d)] ;

γ =
√

ε− β2; γs =
√

εs − β2

are the parameters of normal wave propagation in the dielectric and in the substrate (Imγs ≥ 0), and
A(β) are the unknown amplitudes of the continuous spectrum modes behind the screen.

Additional amplitude factors in the integrands of (9) are introduced in order to satisfy the conditions
(2) at the boundaries of a dielectric layer. If

R43(β) =
γ − αεν

γ + αεν
; T34(β) =

2α

γ + αεν
; R45(β) =

γενs − γsε
ν

γενs + γsεν
; T45(β) =

2γεν

γενs + γsεν
; (10)

D(β) = D0(β) + (−1)νR(β)e2ikαH ; (11)

D0(β) = 1−R43(β)R45(β)e
2ikγh; R(β) = R45(β)e

2ikγh −R43(β) (12)

then these conditions are identically satisfied for each mode of the continuous spectrum, i.e., for each
individual component of the integrals (9). Here, the values Rij(β) and Tij(β) (10) have the meaning
of reflection and refraction coefficients of a plane electromagnetic wave with a tangential propagation
parameter β on a plane boundary between dielectric media with numbers i and j [4, 9].

In region 2 (inside the screen), one should take into account the presence of modes of two slots at
once, inside each of which the field is represented as a discrete Fourier series:

u2(x, y) =

+∞∑
n=1

{Φ(1s)n(x) cos[kξ(1s)n(y+L)]+iΦ(1a)n(x) sin[kξ(1a)n(y+L)]} θ(l21−(y+L)2)

+
+∞∑
n=1

{Φ(2s)n(x) cos[kξ(2s)n(y−L)]+iΦ(2a)n(x) sin[kξ(2a)n(y−L)]} θ(l22−(y−L)2), (13)



Progress In Electromagnetics Research B, Vol. 98, 2023 81

where
ΦN (x) = σ−ν

N {aN exp[ikσN (d+ x)] + (−1)νbN exp[ikσN (d− x)]} ,
N is a multiindex N = (1s)n; (1a)n; (2s)n; (2a)n, in which indices 1 and 2 denote the belonging of the
parameters to one of the two slots; θ is the Heaviside step function [4], which bounds the region of field
existence to the interior of two slots −L− l1 ≤ y ≤ −L+ l1 and L− l2 ≤ y ≤ L+ l2 with the half-widths
l1 and l2. The propagation parameters of symmetric (index s) and antisymmetric (index a) modes of
both slots along the y axis are determined similarly to the case of one slot [6, 9] as follows:

ξ(1s,2s)n =
π

kl1,2

(
n− 1 + ν

2

)
; ξ(1a,2a)n =

π

kl1,2

(
n− ν

2

)
; σ(K)n =

√
1− ξ2(K)n , (14)

where K is a symbol for the doubled index: K = 1s; 2s; 1a; 2a. The first two relations (14) ensure
the fulfillment of the boundary conditions (5) on the conducting walls of the slots y = −L ± l1 and
y = L± l2, and the last Eq. (14) is the condition for the Helmholtz equation to be satisfied for modes.

Substituting the expressions for the fields (7), (9), and (13) into the boundary Eqs. (3) and (4),
we obtain a system of linear equations for the mode amplitudes outside and inside the slots. Using the
conditions of modes orthogonality in various regions [9], from this system one can express the amplitudes
of the modes on both sides of the screen in terms of the amplitudes of the slot modes:

B(β) =
kl1
2π

eikβL
+∞∑
m=1

[
Φ(1s)mQ(1s)

m (β)+Φ(1a)mQ(1a)
m (β)

]
+
kl2
2π

e−ikβL
+∞∑
m=1

[
Φ(2s)mQ(2s)

m (β)+Φ(2a)mQ(2a)
m (β)

]
; (15a)

A(β) =
kl1
2π

eikβL
+∞∑
m=1

[
Ψ(1s)mQ(1s)

m (β)+Ψ(1a)mQ(1a)
m (β)

]
+
kl2
2π

e−ikβL
+∞∑
m=1

[
Ψ(2s)mQ(2s)

m (β)+Ψ(2a)mQ(2a)
m (β)

]
, (15b)

where the overlap integrals of the modes from various regions Q
(1s,1a)
m and Q

(2s,2a)
m for each of the two

slots are determined in the same way as in the case of an only slot [9]:

Q(Ks,Ka)
n (β) =

2

l

∫ l

0

{
cos (kξ(Ks)n) cos (kβy)

sin (kξ(Ka)n) sin (kβy)

}
dy =

2βvξ1−v
(Ks,Ka)n

β + ξ(Ks,Ka)n
·
sin [kl(β − ξ(Ks,Ka)n)]

kl(β − ξ(Ks,Ka)n)
,

K = 1 or K = 2. This provides the opportunity to simplify our diffraction problem and reduce it to
solving the transformed system of boundary equations (4) with respect to the amplitudes of slot modes:

+∞∑
m=1

[
Φ(1s)mV (1s)

nm +Φ(2s)mV̄ (1s2s)
nm − iΦ(2a)mV̄ (1s2a)

nm

]
+ζ(s)nΦ̄(1s)n = 2α1−ν

0 Q(1s)
n (β0) exp(−ikβ0L) (16a)

+∞∑
m=1

[
Φ(1a)mV (1a)

nm − iΦ(2s)mV̄ (1a2s)
nm +Φ(2a)mV̄ (1a2a)

nm

]
+ζ(a)nΦ̄(1a)n = 2α1−ν

0 Q(1a)
n (β0) exp(−ikβ0L)(16b)

+∞∑
m=1

[
Φ(1s)mV̄ (2s1s)

nm +iΦ(1a)mV̄ (2s1a)
nm +Φ(2s)mV (2s)

nm

]
+ζ(s)nΦ̄(2s)n = 2α1−ν

0 Q(2s)
n (β0) exp(ikβ0L) (16c)

+∞∑
m=1

[
iΦ(1s)mV̄ (2a1s)

nm +Φ(1a)mV̄ (2a1a)
nm +Φ(2a)mV (2a)

nm

]
+ζ(a)nΦ̄(2a)n = 2α1−ν

0 Q(2a)
n (β0) exp(ikβ0L) (16d)

+∞∑
m=1

[
Ψ(1s)mW (1s)

nm +Ψ(2s)mW̄ (1s2s)
nm − iΨ(2a)mW̄ (1s2a)

nm

]
− ζ(s)nΨ̄(1s)n = 0 (16e)

+∞∑
m=1

[
Ψ(1a)mW (1a)

nm − iΨ(2s)mW̄ (1a2s)
nm +Ψ(2a)mW̄ (1a2a)

nm

]
− ζ(a)nΨ̄(1a)n = 0 (16f)

+∞∑
m=1

[
Ψ(1s)mW̄ (2s1s)

nm +iΨ(1a)mW̄ (2s1a)
nm +Ψ(2s)mW (2s)

nm

]
− ζ(s)nΨ̄(2s)n = 0 (16g)

+∞∑
m=1

[
iΨ(1s)mW̄ (2a1s)

nm +Ψ(1a)mW̄ (2a1a)
nm +Ψ(2a)mW (2a)

nm

]
− ζ(a)nΨ̄(2a)n = 0 (16h)
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where ζ(s)n = 1+ νδ1n; ζ(a)n = 1, δ1n is the Kroneker’s symbol (δ1n = 1 at n = 1 and δ1n = 0 at n ̸= 1).
The amplitudes of slot modes a(1s,1a)m, a(2s,2a)m and b(1s,1a)m, b(2s,2a)m enter Eqs. (15) and (16) through
linear combinations

ΦM = aM + bM exp(2ikσMd) ; ΨM = aM exp(2ikσMd) + bM ;

Φ̄N = σ1−2ν
N [aN − bN exp(2ikσNd)] ; Ψ̄N = σ1−2ν

N [aN exp(2ikσNd)− bN ] ,

where M and N are multiindexes: M = (1s)m; (1a)m; (2s)m; (2a)m; N = (1s)n; (1a)n; (2s)n; (2a)n,
and the amplitude-independent coefficients of system (16) have the form{

V (1s),(1a)
nm

W (1s),(1a)
nm

}
=

kl1
π

∫ +∞

−∞
C(β)α1−2νQ(1s),(1a)

n (β)Q(1s),(1a)
m (β) dβ ; (17a)

{
V (2s),(2a)
nm

W (2s),(2a)
nm

}
=

kl2
π

∫ +∞

−∞
C(β)α1−2νQ(2s),(2a)

n (β)Q(2s),(2a)
m (β) dβ ; (17b)

{
V̄ (1s2s),(1a2a)
nm

W̄ (1s2s),(1a2a)
nm

}
=

kl2
π

∫ +∞

−∞
C(β)α1−2ν cos(2kβL)Q(1s),(1a)

n (β)Q(2s),(2a)
m (β) dβ ; (18a)

{
V̄ (1s2a),(1a2s)
nm

W̄ (1s2a),(1a2s)
nm

}
=

kl2
π

∫ +∞

−∞
C(β)α1−2ν sin(2kβL)Q(1s),(1a)

n (β)Q(2a),(2s)
m (β) dβ ; (18b)

{
V̄ (2s1s),(2a1a)
nm

W̄ (2s1s),(2a1a)
nm

}
=

kl1
π

∫ +∞

−∞
C(β)α1−2ν cos(2kβL)Q(2s),(2a)

n (β)Q(1s),(1a)
m (β) dβ ; (18c)

{
V̄ (2s1a),(2a1s)
nm

W̄ (2s1a),(2a1s)
nm

}
=

kl1
π

∫ +∞

−∞
C(β)α1−2ν sin(2kβL)Q(2s),(2a)

n (β)Q(1a),(1s)
m (β) dβ , (18d)

where C(β) = 1 for the upper coefficients, denoted by the letter V and C(β) = D̄(β)/D(β) for the lower
coefficients W , D̄(β) = D0(β)− (−1)νR(β) exp(2ikαH); D0 and R are functions (12).

The additive regularization of matrix integrals (17), (18) and field integrals (9) near the complex
zeros of the function D(β) (11) is carried out in exactly the same way as in the case of an only slot in
the screen [9]. The spatial structure of the diffraction field by two slots is also calculated using Eqs. (1),
(7), (9), (13) by analogy with this simpler case.

3. SPATIAL PATTERN OF THE DIFFRACTION FIELD

The diffraction field of two slots is not a superposition of the diffraction fields from each slot separately,
because these fields are determined independently of each other, and when being superimposed, each of
them will violate conditions (4) at the boundaries of the other slot. In order to satisfy these conditions
simultaneously for both slots, the terms with coefficients (18) appear in Eqs. (16), which describe the
mutual matching of fields inside the slots during diffraction. However, calculations show that in the
absence of such terms, when all coefficients (18) are equal to zero, the diffraction field will differ little
from the field described by the rigorous solution with nonzero coefficients (18). The mutual influence
of diffraction fields is more or less noticeable (with a relative difference of less than 5%) only in the
space between the slots and at very small distances from the screen (up to 0.1λ–0.2λ). In other regions
of the space behind the screen, this effect can be neglected, and the resulting diffraction field can be
considered as a simple superposition of independent diffraction fields from two slots.

Let us consider the spatial structure of the slot images, i.e., light diffraction spots, in a thin
dielectric film (d + H ≤ x ≤ d + H + h), which is located behind the conducting screen on a thick
substrate (Fig. 1) and operates as an optical radiation detector, an object under spectroscopic study, or
an exposed photoresist in lithography. Calculations show that the diffraction field varies slightly over



Progress In Electromagnetics Research B, Vol. 98, 2023 83

the depth of the dielectric, so in this direction it can be averaged. As a result, one can consider the
relative electric energy density in that as a function of only one tangential coordinate y [10]:

W (y) = ε
1

W0h

∫ d+H+h

d+H
|E(x, y)|2dx (19)

where W0 is the electric energy density of the incident plane wave; ε = n2 is the dielectric constant of
the film; n is its refractive index; E(x, y) is the electric field value inside the film, calculated by Eqs. (1)
and (9). We shall consider the conditions of the best resolution of two images from different slots and
the conditions for their optimal focusing in the smallest area on the film, which are of the greatest
interest for local optical spectroscopy and lithography. As it turned out, for a theoretical estimation of
these conditions, it is sufficient to use one scalar parameter, namely the index of the relative decrease
in the diffraction slot image, or, in short, the diffraction focusing parameter F [10], which is determined
according to the formula

F = (l1 + l2)W3/(W1W2) , (20)

where

Wm =

∫ +∞

−∞
Wm(y)dy , m = 1; 2; 3

is the integral over the dielectric layer surface of the electric energy density of the field (19) to power
m. However, here, in contrast to the case of an only slot, for the focusing parameter (20) one obtains
the value averaged over two slots.

The quality of the diffraction image depends on a large number of geometric parameters: the
half-thickness of a perfectly conducting screen d and the thickness of the dielectric film h, the distance
between the screen and the film H, the half-widths of the slots l1 and l2, and also on the distance
between them ∆ = 2L− l1 − l2. Therefore, let us consider a simplified case of diffraction of a normally
incident plane electromagnetic wave on two identical slots of equal half-width l1 = l2 ≡ l, when the
dielectric film and substrate are transparent with constant refractive indices n = 1.60 and ns = 1.46,
respectively. With such initial data, the diffraction problem turns out to be completely symmetrical in
the tangential coordinate y (Fig. 1), and consequently the focusing parameter F will be the same for
both slots under consideration. Fig. 2 shows the results of calculations of this parameter for radiation
of two various polarizations. It can be seen that for a system of two slots, as well as for one, the
H-polarized radiation can be focused much more efficiently than the E-polarized one, and the larger
values of the focusing parameter can be achieved for it.

(a) (b)

Figure 2. The dependence of the focusing parameter F of two identical slots on their half-width
l1 = l2 ≡ l at the diffraction of a plane wave of (a) H polarization and (b) E polarization for three
various values of the distance between the edges of the slots ∆ = 2(L− l), when the screen half-thickness
d = 0.75λ, the dielectric film thickness h = 1.2λ, and the distance between screen and film H = 0.6λ.
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(a) (b) (c)

Figure 3. Distribution of the intensity of diffraction radiation of H polarization from two identical
slots with the half-width l1 = l2 ≡ l = (a) 0.76λ; (b) 1.26λ; (c) 1.48λ in the dielectric film with the
thickness h = 1.2λ, which is located at the distance H = 0.6λ from a conducting screen with slots,
at the same thickness of the screen 2d = 1.5λ and the same distance between the edges of the slots
∆ = 2(L− l) = 0.5λ. The dotted line shows the projections of two slot apertures onto the film.

(a) (b) (c)

Figure 4. The same as for Fig. 3, but for the slot half-width l1 = l2 ≡ l = (a) 0.86λ; (b) 1.32λ; (c) 1.8λ.

Figure 3 shows spatial distributions of the electric energy of the H-polarized diffraction field in a
dielectric film for three various maxima of this parameter, and Fig. 4 shows it for three various minima.
A comparison of these two figures confirms the fact that the focusing parameter F , calculated by formula
(20), makes it possible to characterize the focusing properties of a diffraction system with any number of
slots, as well as to estimate the diffraction resolution of such a system. Indeed, it can be seen from Fig. 4
that, at relatively small values of the focusing parameter, a noticeable concentration of energy is observed
in the area between the slots in the form of additional field maxima. Naturally, their presence nullifies
the spatial resolution of the slot images. On the contrary, at large values of the focusing parameter
(Fig. 3), when F > 2, almost all the field energy is rather uniformly concentrated in small areas directly
behind the slots, and the magnitude of the interference field between them is minimal. However, such
a pattern is realized only for the H-polarized radiation, while for E polarization, even at the maximum
values of the focusing parameter (F < 1.5), one observes significant distortions of the uniform profile of
the diffraction images of the slots and, at the same time, a noticeable illumination of the area between
the slots (Fig. 5). The comparison of Figs. 3 and 4, as well as Fig. 2, clearly demonstrates one more
feature of small slot diffraction: a very strong dependence of the focusing properties of slot apertures
on their width 2l, when a change in the half-width of slots by only 0.1λ–0.2λ can lead to a sharp change
in the quality of the diffraction image.

It should be borne in mind that our completely rigorous theory has a limited field of application [10],
since for short-wave electromagnetic radiation, starting from the near infrared region, real metal screens
cannot be considered as perfectly conducting [4, 12]. For visible light, one must employ more suitable
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(a) (b) (c)

Figure 5. Distribution of the intensity of diffraction radiation of E polarization from two identical
slots with the half-width l1 = l2 ≡ l = (a) 0.96λ; (b) 1.5λ; (c) 2.0λ in the dielectric film with the
thickness h = 1.2λ, which is located at the distance H = 0.6λ from a conducting screen with slots,
at the same thickness of the screen 2d = 1.5λ and the same distance between the edges of the slots
∆ = 2(L− l) = 0.5λ.

diffraction model with the screen having finite conductivity, but we do not know any works, where such
models would be considered.

Unfortunately, we are also unaware of works that could serve as experimental confirmation of the
existence of the effect of lensless aperture focusing. At one time, Nye and Liang carried out a number
of experiments on a thorough study of the amplitude-phase pattern of the microwave radiation fields of
diffraction by one and two slots (see, for example, [13]), but these studies were performed for slots with
a width smaller than the wavelength.

4. CONCLUSION

Thus, we have shown that the scalar focusing parameter F (20), introduced in [10] in order to
characterize the diffraction image of a single slot, can be successfully used to select the optimal conditions
for estimating images from several small slots, despite the explicit dependence of the quality of such
images on set of parameters of the diffraction system. Of course, in practice, the choice of many of these
geometric parameters will be extremely limited, if not completely excluded. For example, in optical
lithography systems, the choice of slot width 2l (aperture size), the distance between them ∆, and the
thickness of the dielectric film h is dictated to some extent by technological conditions and third-party
requirements, but the thickness of the conducting screen 2d and the distance H between it and the
sensitive film can be varied within certain limits. That is, the examples shown above do not exhaust all
the variety of applications of the proposed double-slot diffraction model and are purely demonstrative.
Nevertheless, already on the basis of these examples, we can formulate some general conclusions.

First of all, the total diffraction field of two slots can be calculated with high accuracy as the
interference field of two independent diffraction fields from each of the two slots separately. Further,
to obtain maximum focusing and the highest resolution of diffraction images of slots, it is better to
use the H-polarized exposure radiation, whose electric vector is parallel to their boundaries. Here,
such a diffraction system is optimal, in which all geometric parameters turn out to be of the order of
the radiation wavelength. In particular, the slot width 2l should be chosen on the order of 2.2λ–3.2λ.
For more narrow slots, the divergence of diffraction radiation sharply increases with all the ensuing
consequences, and for wider slots, wave-like interference distortions of the image profile gradually
increase. Finally, despite the large number of parameters, which affect the quality of diffraction images,
the optimal values of these parameters can be selected using just one scalar value, the focusing parameter
F (20). The greater its value is in magnitude, the more effective focusing of images is and the better
their mutual resolution is. Our analysis confirms that the maxima of this parameter, depending on the
characteristics of the diffraction system of two slots, coincide or almost coincide with the maxima of the
focusing parameter for an only slot.
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