Vol. 116
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-04-02
Design and Analysis of a Frequency Selective Surface Loaded Bioinspired Antenna in Frequency and Time Domains
By
Progress In Electromagnetics Research M, Vol. 116, 39-52, 2023
Abstract
The paper addresses a bioinspired printed antenna in the shape of a `Lotus' which is further loaded with a new type of Frequency Selective Surface (FSS) structure with unit cell dimension as 0.16λ0×0.16λ0×0.033λ0, where λ0 is the lowest operating wavelength. The two dissimilar layers of FSS, which are separated by an air gap of about 3.2 mm, have been placed below the antenna. The combined structure operates over 3.8 GHz to 14.4 GHz (116.5% measured) with peak realized gain of 7.5 dBi. The introduction of the FSS layer provides gain enhancement of about 5.9 dBi. The standalone FSS geometry provides a wide transmission bandwidth from 5.5 to 12.5 GHz along with good angular stability of about 50º. The Gielissuper formula has been used to develop the petal of the lotus shaped antenna. The time domain analysis of the lotus shaped antenna has also been provided. The proposed structure can be used as an electromagnetic sensor for wide band applications over C, X and partially Ku bands.
Citation
Anett Antony, and Bidisha Dasgupta, "Design and Analysis of a Frequency Selective Surface Loaded Bioinspired Antenna in Frequency and Time Domains," Progress In Electromagnetics Research M, Vol. 116, 39-52, 2023.
doi:10.2528/PIERM23010302
References

1. Narayan, S., B. Sangeetha, and R. M. Jha, Frequency Selective Surfaces Based High Performance Microstrip Antenna, Springer Briefs in Electrical and Computer Engineering, Springer, Singapore, 2016.
doi:10.1007/978-981-287-775-8

2. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, USA, 2005.

3. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Antennas Propag., Vol. 47, No. 11, 2059-2074, Nov. 1999.

4. Pan, W., C. Huang, P. Chen, X. Ma, C. Hu, and X. Luo, "A low-RCS and high-gain partially reflecting surface antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 945-949, Feb. 2014.
doi:10.1109/TAP.2013.2291008

5. Das, G., A. Sharma, R. K. Gangwar, and M. S. Sharawi, "Performance improvement of multiband MIMO dielectric resonator antenna system with a partially reflecting surface," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 10, 2105-2109, Aug. 2019.
doi:10.1109/LAWP.2019.2938004

6. Ameen, M. and R. K. Chaudhary, "Metamaterial-based wideband circularly polarised antenna with rotated V-shaped metasurface for small satellite applications," Electron Lett., Vol. 55, No. 7, 365-366, Apr. 2019.
doi:10.1049/el.2018.7348

7. Kundu, S., A. Chatterjee, S. Kumar Jana, and S. K. Parui, "A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface," Radioengg., Vol. 27, No. 2, 448-454, Jun. 2018.

8. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," Int. J. RF Microw. Computer-Aided Engg., Vol. 31, No. 2, 1-12, Dec. 2020.

9. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "A simple frequency selective surface structure for performance improvement of ultra-wideband antenna in frequency and time domains," Int. J. RF Microw. Computer-Aided Engg., Vol. 31, No. 11, 1-13, Dec. 2021.

10. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley and Sons, New Jersey, 2005.

11. Gielis, J., "A generic geometric transformation that unifies a wide range of naturaland abstract shapes," American J. Botany, Vol. 90, No. 3, 333-338, 2003.
doi:10.3732/ajb.90.3.333

12. Chattopadhyay, S., Trends in Research on Microstrip Antennas, IntechOpen, London, UK, 2017.
doi:10.5772/65580

13. Mighani, M. and M. Akbari, "New UWB monopole planer antenna with dual band notched," Progress In Electromagnetics Research C, Vol. 52, 153-162, 2014.
doi:10.2528/PIERC14053002

14. Li, H. F., Z. N. Chen, and L.-W. Li, "Investigation of time-domain characteristics of thin-wire antennas," Microw. Opt. Techn. Lett., Vol. 43, No. 3, 253-258, Nov. 2004.
doi:10.1002/mop.20435

15. Sarkar, T. K., D. Ghosh, A. De, M. C. Taylor, M. C. Wicks, and E. L. Mokole, "Transmission and reception by ultra-wideband (UWB) antennas," IEEE Antennas Propag. Mag., Vol. 48, No. 5, 67-99, Oct. 2006.

16. Ganguly, D., D. Guha, S. Das, and A. Rojatkar, "Systematic approach to estimating monocycle pulse for time-domain studies of UWB antennas using numerical computations and simulation tools," IEEE Antennas Propag. Mag., Vol. 56, No. 4, 73-87, Aug. 2014.
doi:10.1109/MAP.2014.6931659

17. Ansys High Frequency Structural Simulator (HFSS). Version 16.2.

18. Computer Simulation Software (CST). Version 2018.

19. Antony, A. and B. Dasgupta, "Lotus shaped printed antenna for UWB applications," 2021 IEEE 18th India Council Int. Conf. (INDICON), Guwahati, India, Feb. 2021.

20. Schantz, H. G., The Art and Science of Ultrawideband Antennas, Artech House, Norwood, MA, 2005.

21. Zahran, S. R., M. A. Abdalla, and A. Gaafar, "Time domain analysis for foldable thin UWB monopole antenna," AEU-Inter. J. of Electro. Comm., Vol. 83, 253-262, 2018.
doi:10.1016/j.aeue.2017.09.006

22. Valderas, D., J. I. Sancho, D. Puente, C. Ling, and X. Chen, Ultrawideband Antennas Design and Applications, Imperial College Press, London, 2011.

23. Chen, Z. N., X. H. Wu, H. F. Li, N. Yang, and M. Y. W. Chia, "Considerations for source pulses and antennas in UWB radio systems," IEEE Trans. Antennas Propag., Vol. 52, No. 7, 1739-1748, Jul. 2004.
doi:10.1109/TAP.2004.831405

24. Natarajamani, S., "Some studies on designs of planar antennas for UWB applications,", Ph.D. dissertation, Dept. Elect. and Comm. Eng., NIT Rourkela, Odisha, India, 2014.

25. Kwon, D. H., "Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultrawideband antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2208-2215, Aug. 2006.
doi:10.1109/TAP.2006.879189

26. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency selective surface by a simple equivalent-circuit model," IEEE Antennas Wirel. Propag. Mag., Vol. 54, No. 4, 35-48, Sep. 2012.
doi:10.1109/MAP.2012.6309153

27. Chatterjee, A. and S. K. Parui, "A triple-layer dual-bandpass frequency selective surface of third order response with equivalent circuit analysis," Int. J. RF Microw. Computer Aided Engg., Vol. 30, No. 6, 1-7, Feb. 2020.

28. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Design, characterization and fabrication of a broadband polarization-insensitive multi-layer circuit analogue absorber," IET Microw. Antennas Propag., Vol. 10, No. 8, 850-855, Jun. 2016.
doi:10.1049/iet-map.2015.0653

29. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Comm., Vol. 12, No. 12, 1448-1453, Jun. 2018.
doi:10.1049/iet-com.2018.0170