Vol. 115
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-02-08
Fundamental Study on Comb-Line Antennas Modified with Loop Elements for Increased Axial Ratio Bandwidth
By
Progress In Electromagnetics Research M, Vol. 115, 59-69, 2023
Abstract
We study three comb-line antennas to increase the bandwidth for a 3 dB axial ratio criterion. Each antenna comprises linear radiation elements with loops and a coplanar feedline above the ground plane. First, we analyze a reference antenna with a straight feedline using the method of moments. Next, the straight feedline is transformed into a round one for a sequential rotation technique. It is found that the antenna has an increased bandwidth of 30%, which is three times as wide as that of the reference antenna. Last, we propose a novel antenna with a straight feedline. It is revealed that the antenna shows a 3 dB gain drop bandwidth of 29% (40% for the axial ratio bandwidth). The simulated results are validated by experimental work.
Citation
Kazuhide Hirose, Yuto Kikkawa, Susumu Tsubouchi, and Hisamatsu Nakano, "Fundamental Study on Comb-Line Antennas Modified with Loop Elements for Increased Axial Ratio Bandwidth," Progress In Electromagnetics Research M, Vol. 115, 59-69, 2023.
doi:10.2528/PIERM22123001
References

1. Volakis, J. L., Antenna Engineering Handbook, 4th Ed., Ch. 11, McGraw-Hill, New York, USA, 2007.

2. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Ch. 13, Peregrinus, Stevenage, UK, 1989.

3. Cao, Y., S. Yan, J. Li, and J. Chen, "A pillbox based dual circularly-polarized millimeter-wave multi-beam antenna for future vehicular radar applications," IEEE Trans. Vehicular Technology, Vol. 71, No. 7, 7095-7103, 2022.
doi:10.1109/TVT.2022.3162299

4. Cameron, T. R., A. T. Sutinjo, and M. Okoniewski, "A circularly polarized broadside radiating ``herringbone'' array design with the leaky-wave approach," IEEE Antennas Wireless Propag. Lett., Vol. 9, 826-829, 2010.
doi:10.1109/LAWP.2010.2066950

5. Hirose, K., H. Araya, and H. Nakano, "Microstrip line antennas composed of sequentially rotated loop radiation cells," IEICE Trans., Vol. J88-B, No. 9, 1855-1862, 2005.

6. Hirose, K., M. Nakatsu, and H. Nakano, "A loop antenna with enlarged bandwidth of circular polarization - Its application in a comb-line antenna," Progress In Electromagnetics Research C, Vol. 105, 175-184, 2020.
doi:10.2528/PIERC20071902

7. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, NY, USA, 1968.

8. Hirose, K., T. Shibasaki, Y. Yoshida, and H. Nakano, "Ladder antennas for dual circular polarization," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1174-1177, 2012.
doi:10.1109/LAWP.2012.2220751

9. Hirose, K., Y. Tamura, M. Tsugane, and H. Nakano, "Coplanar series-fed spiral antenna arrays for enlarged axial ratio bandwidth," Progress In Electromagnetics Research Letters, Vol. 108, 1-8, 2022.

10. Rocher, M. F., J. H. Herruzo, A. V. Nogueira, and B. B. Clemente, "Single-layer sequential rotation network in gap waveguide for a wideband low-profile circularly polarized array antenna," IEEE Access, Vol. 10, 62157-62163, 2022.
doi:10.1109/ACCESS.2022.3182336

11. Qi, Z., Y. Zhu, and X. Li, "Compact wideband circularly polarized patch antenna array using self-sequential rotation technology," IEEE Antennas Wireless Propag. Lett., Vol. 21, No. 4, 700-704, 2022.
doi:10.1109/LAWP.2022.3142307

12. Ma, R., Z. Jiang, Y. Zhang, X. Wu, T. Yue. W. Hong, and D. H. Werner, "Theory, design, and verification of dual-circularly polarized dual-beam arrays with independent control of polarization: A generalization of sequential rotation arrays," IEEE Trans. Antennas Propag., Vol. 69, No. 3, 1369-1382, 2021.
doi:10.1109/TAP.2020.3016500

13. Nakano, H., T. Oka, K. Hirose, and J. Yamauchi, "Analysis and measurements for improved crank-line antennas," IEEE Trans. Antennas Propag., Vol. 45, No. 7, 1166-1172, 1997.
doi:10.1109/8.596910

14. Mishra, G., S. K. Sharma, and J. S. Chieh, "A high gain series-fed circularly polarized traveling-wave antenna at W-band using a new butterfly radiating element," IEEE Trans. Antennas Propag., Vol. 68, No. 12, 7947-7957, 2020.
doi:10.1109/TAP.2020.3000567

15. Ogurtsov, S. and S. Koziel, "A conformal circularly polarized series-fed microstrip antenna array design," IEEE Trans. Antennas Propag., Vol. 68, No. 2, 873-881, 2020.
doi:10.1109/TAP.2019.2943326

16. Sun, M., N. Liu, L. Zhu, and G. Fu, "Wideband circularly polarized sequentially rotated microstrip antenna array with sequential-phase feeding network," J. of Communications and Information Networks, Vol. 5, No. 3, 350-357, 2020.
doi:10.23919/JCIN.2020.9200898

17. Yan, N., K. Ma, and Y. Luo, "An SISL sequentially rotated feeding circularly polarized stacked patch antenna array," IEEE Trans. Antennas Propag., Vol. 68, No. 3, 2060-2067, 2020.
doi:10.1109/TAP.2019.2957096