Vol. 115
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-02-22
Multiband Antenna for 2G/3G/4G and Sub-6 GHz 5G Applications Using Characteristic Mode Analysis
By
Progress In Electromagnetics Research M, Vol. 115, 107-117, 2023
Abstract
A multi-band microstrip patch antenna consisting of an elliptical shape patch with four triangular-shaped arms mounted on a Rogers AD255C substrate with coaxial feed technique to cover 1720 MHz for 2G, 2120 MHz for 3G, 2372 MHz for 4G, and 3536 MHz for Sub-6 GHz 5G wireless communication applications is proposed in this paper. The antenna is designed by exciting a dominant & its orthogonal as well as higher order TMzmn0 modes based on cavity model-circular patch theory and then reshaped to an elliptical shape to get the resonance at desired bands. A Characteristics Mode Analysis (CMA) is used for computing electromagnetic resonance frequencies in conducting bodies. A radiating characteristic of the proposed antenna structure is analyzed and verified using CMA technique for target applications frequencies. The CMA demonstrates that the proposed antenna resonates at 1728 MHz, 2127 MHz, 2358 MHz, and 3436 MHz, making them suitable for use as multi-band antenna for 2G, 3G, 4G, and Sub-6 GHz 5G applications respectively after proper feeding. A simulated bandwidth at -10 dB return loss is 23 MHz (1707-1730 MHz) for 2G, 34  MHz (2104-2138 MHz) for 3G, 18 MHz (2364-2382  MHz) for 4G, and 67 MHz (3499-3566  MHz) for Sub-6 GHz 5G applications. The simulated peak gains are 6.29 dBi, 7.08 dBi, 4.51 dBi & 6.18 dBi which are validated by measured results at the respective resonant frequencies. An overall dimension of the proposed antenna is 100×100×3.175 mm3. The proposed antenna was simulated by CST Studio Suite 2020. Measurement was done for the fabricated antenna which shows good agreement with simulated ones. The proposed multi-band antenna with low complexity & easy design offers a quasi-omnidirectional radiation pattern and performance improvement.
Citation
Devendra H. Patel, and Gautam Durlabhji Makwana, "Multiband Antenna for 2G/3G/4G and Sub-6 GHz 5G Applications Using Characteristic Mode Analysis," Progress In Electromagnetics Research M, Vol. 115, 107-117, 2023.
doi:10.2528/PIERM22122901
References

1. Balanis, C. A., Antenna Theory Analysis and Design, New Jersey Wiley, Hoboken, 2016.

2. Patel, D. H. and G. D. Makwana, "A comprehensive review on multi-band microstrip patch antenna comprising 5G wireless communication," International Journal of Computing and Digital Systems, Vol. 11, No. 1, 941-953, Feb. 2022.
doi:10.12785/ijcds/110177

3. Deng, J. Y., J. Yao, and L. X. Guo, "Compact multi-band antenna for mobile terminal applications," Microwave and Optical Technology Letters, Vol. 60, No. 7, 1691-1696, May 2018.
doi:10.1002/mop.31229

4. Garbacz, R. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 3, 348-358, May 1971.
doi:10.1109/TAP.1971.1139935

5. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, Sep. 1971.
doi:10.1109/TAP.1971.1139999

6. Harrington, R. and J. Mautz, "Computation of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 629-639, Sep. 1971.
doi:10.1109/TAP.1971.1139990

7. Elias, B. B. Q., P. J. Soh, A. A. Al-Hadi, P. Akkaraekthalin, and G. A. E. Vandenbosch, "A review of antenna analysis using characteristic modes," IEEE Access, Vol. 9, 98833-98862, 2021.
doi:10.1109/ACCESS.2021.3095422

8. Chen, Y. and C.-F.Wang, Characteristic Modes: Theory and Applications in Antenna Engineering, Wiley, Hoboken, N.J., 2016.

9. Lau, B. K., M. Capek, and A. M. Hassan, "Characteristic modes: Progress, overview, and emerging topics," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 14-22, Apr. 2022.
doi:10.1109/MAP.2022.3145719

10. Adams, J. J., S. Genovesi, B. Yang, and E. Antonino-Daviu, "Antenna element design using characteristic mode analysis: Insights and research directions," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 32-40, Apr. 2022.
doi:10.1109/MAP.2022.3145718

11. Biswas, A. and V. R. Gupta, "Multiband antenna design for smartphone covering 2G, 3G, 4G and 5G NR frequencies," 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Apr. 2019.

12. Alieldin, A., et al. "A triple-band dual-polarized indoor base station antenna for 2G, 3G, 4G and sub-6 GHz 5G applications," IEEE Access, Vol. 6, 49209-49216, 2018.
doi:10.1109/ACCESS.2018.2868414

13. Yu, Z., Z. Lin, X. Ran, Y. Li, B. Liang, and X. Wang, "A novel `回' pane structure multiband microstrip antenna for 2G/3G/4G/5G/WLAN/navigation applications," International Journal of Antennas and Propagation, Vol. 2021, 1-15, Jun. 2021.

14. Zhu, X. Z., J. L. Zhang, T. Cui, Z. Q. Zheng, and , "A dual-broadband printed dipole antenna for 2G/3G/4G base station applications," International Journal of Antennas and Propagation, Vol. 2019, Article ID 4345819, 2019.

15. Yu, Z., J. Yu, X. Ran, and C. Zhu, "A novel ancient coin-like fractal multi-band Antenna for wireless applications," International Journal of Antennas and Propagation, Vol. 2017, Article ID 6459286, 2017.

16. Wang, L., J. Yu, T. Xie, Z. Yu, B. Liang, and X. Xu, "The design of a multi-band bionic antenna for mobile terminals," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 6, 2021.

17. Abolade, J. O., D. B. O. Konditi, and V. M. Dharmadhikary, "Ultra-compact hexa-band bio-inspired antenna for 2G, 3G, 4G, and 5G wireless applications," International Journal on Communications Antenna and Propagation (IRECAP), Vol. 11, No. 3, 197, Jun. 2021.
doi:10.15866/irecap.v11i3.20379

18. Azim, R., T. Alam, M. S. Mia, A. F. Almutairi, and M. T. Islam, "An octa-band planar monopole antenna for portable communication devices," Scientific Reports, Vol. 11, No. 1, Jul. 2021.