Vol. 109
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-02-01
Design of a Planar Compact Dual-Band Bandpass Filter with Multiple Transmission Zeros Using a Stub-Loaded Structure
By
Progress In Electromagnetics Research Letters, Vol. 109, 23-30, 2023
Abstract
This paper presents a new compact dual-band bandpass filter (BPF) with a stub-loaded resonator structure that can independently change its operating band to support GSM and WiFi applications for modern wireless communications. A short-circuit stub with a metal through hole is placed into the symmetrical resonator together with a pair of step impedance stubs and a pair of uniform open-circuit stubs. Inside the resonator, the open stubs fold in on themselves, minimizing the circuit for integration with other parts and enhancing the selectivity of the filter. Even-odd mode theory can be employed to investigate the circuit because of the resonator geometric symmetry. The first and second operational frequency bands can then be built using the calculated odd and even mode frequencies to match our requirements. The manufactured experimental dual-band filter is compared to the simulation results, and the statistics revealed good agreement. The calculated structural measures 0.13λg × 0.1λg.
Citation
Guangyong Wei, Yun Xiu Wang, Jie Liu, and Hai Ping Li, "Design of a Planar Compact Dual-Band Bandpass Filter with Multiple Transmission Zeros Using a Stub-Loaded Structure," Progress In Electromagnetics Research Letters, Vol. 109, 23-30, 2023.
doi:10.2528/PIERL22122603
References

1. Karimzadeh-Jazi, R., M. A. Honarvar, and F. Khajeh-Khalili, "High Q-factor narrow-band bandpass filter using cylindrical dielectric resonators for X-band applications," Progress In Electromagnetics Research Letters, Vol. 77, 65-71, 2018.
doi:10.2528/PIERL18041007

2. Kumar, R. and S. N. Singh, "Design and analysis of ridge substrate integrated waveguide bandpass filter with octagonal complementary split ring resonator for suppression of higher order harmonics," Progress In Electromagnetics Research C, Vol. 89, 87-99, 2019.
doi:10.2528/PIERC18080404

3. Gorur, A. K., "A novel compact microstrip balun bandpass filter design using interdigital capacitor loaded open loop resonators," Progress In Electromagnetics Research Letters, Vol. 76, 47-53, 2018.
doi:10.2528/PIERL18010926

4. Wei, F., H. J. Yue, X. H. Zhang, and X.-W. Shi, "A balanced quad-band BPF with independently controllable frequencies and high selectivity," IEEE Access, Vol. 7, 110316-110322, 2019.
doi:10.1109/ACCESS.2019.2934494

5. Yang, Q., Y.-C. Jiao, and Z. Zhang, "Compact multiband bandpass filter using low-pass filter combined with open stub-loaded shorted stub," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1926-1938, 2018.
doi:10.1109/TMTT.2018.2791961

6. Yin, B. and Z. Y. Lin, "A novel dual-band bandpass SIW filter loaded with modified dual-CSRRs and Z-shaped slot," Int. J. of Electron. Commun., Vol. 121, 153-261, 2020.

7. Wang, Z. J., C. Wang, and N. Y. Kim, "Dual-/triple-wideband microstrip bandpass filter using independent triple-mode stub-loaded resonator," Microwave and Optical Technology Letters, Vol. 60, No. 1, 56-64, 2018.
doi:10.1002/mop.30909

8. Tang, M. C., T. Shi, S. Y. Chen, and H. L. Cao, "Dual-band bandpass filter based on a single triple-mode ring resonator," Electron. Lett., Vol. 52, No. 9, 722-723, 2016.
doi:10.1049/el.2015.2692

9. Huang, W., L. Li, L. Li, Y. Ren, and Y. Ma, "A compact coplanar waveguide dual-band bandpass filters based on defected ground structures," IEICE Electronics Express, Vol. 18, No. 15, 16, 2021.
doi:10.1587/elex.18.20210053

10. Lai, X., C. H. Liang, H. Di, and B. Wu, "Design of tri-band filter based on stub loaded resonator and DGS resonator," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 5, 265-267, 2010.
doi:10.1109/LMWC.2010.2045584

11. Lu, H., Y. Yuan, J. Huang, X. Zhang, and N. Yuan, "Design of compact dual-mode dual-band microstrip bandpass filter using stepped-impedance resonator for wireless communication applications," 2018 International Conference on Microwave and Millimeter Wave Technology, 1-3, 2018.

12. Ren, B., H. Liu, Z. Ma, M. Ohira, P.Wen, X. Wang, and X. Guan, "Compact dual-band differential bandpass filter using quadruple-mode stepped-impedance square ring loaded resonators," IEEE Access, Vol. 6, 21850-21858, 2018.
doi:10.1109/ACCESS.2018.2829025

13. Song, K., F. Zhang, and Y. Fan, "Miniaturized dual-band bandpass filter with good frequency selectivity using SIR and DGS," Int. J. of Electron. Commun., Vol. 68, No. 5, 384-387, 2014.
doi:10.1016/j.aeue.2013.10.005

14. Zobeyri, M. R. and A. R. Eskandari, "Design of single- and dual-band BPFs using folded 0˚ feed structures and embedded resonators," International Journal of Electronics and Communications, Vol. 96, 18-29, 2018.
doi:10.1016/j.aeue.2018.09.011

15. Pozar, D. M., Microwave Engineering, Wiley, 2009.

16. Sami, A. and M. Rahman, "A very compact quintuple band bandpass filter using multimode stub loaded resonator," Progress In Electromagnetics Research C, Vol. 93, 211-222, 2019.
doi:10.2528/PIERC19040409