Vol. 117
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-05-18
Comparative Analysis of NavIC Multipath Observables for Soil Moisture Over Different Field Conditions
By
Progress In Electromagnetics Research M, Vol. 117, 25-35, 2023
Abstract
Studies of soil moisture with Global Navigation Satellite System (GNSS) have gained the attention of several researchers. Multipath amplitude, multipath phase, and multipath frequency are multipath observables that are utilized in the study of soil moisture. However, an inter-comparison of the performance of these parameters for soil moisture under different roughness and vegetation conditions is very much required to have a better insight so that more robust inversion algorithm for soil moisture retrieval with multipath observables can be designed. Therefore, this paper analyses the performance of these multipath observables for soil moisture over bare smooth soil, rough surface, and vegetated soil. Two different fields have been investigated to include the location variability. Navigation with Indian constellation (NavIC) multipath signal has been used in this study. Statistical parameters such as correlation coefficient (R), Root Mean Square Error (RMSE), and sensitivity have been determined to study the performance of multipath observable for soil moisture under different surface roughness and vegetation conditions.
Citation
Sushant Shekhar, Rishi Prakash, Dharmendra Kumar Pandey, Anurag Vidyarthi, Deepak Putrevu, and Nilesh M. Desai, "Comparative Analysis of NavIC Multipath Observables for Soil Moisture Over Different Field Conditions," Progress In Electromagnetics Research M, Vol. 117, 25-35, 2023.
doi:10.2528/PIERM22122504
References

1. Zavorotny, V. U., K. M. Larson, J. J. Braun, E. E. Small, E. D. Gutmann, and A. L. Bilich, "A physical model for GPS multipath caused by land reflections: Toward bare soil moisture retrievals," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 3, 100-110, 2010, doi: 10.1109/JSTARS.2009.2033608.
doi:10.1109/JSTARS.2009.2033608

2. Chew, C. C., E. E. Small, K. M. Larson, and V. U. Zavorotny, "Vegetation sensing using GPS-interferometric reflectometry: Theoretical effects of canopy parameters on signal-to-noise ratio data," Vegetation sensing using GPS-interferometric reflectometry: Theoretical effects of canopy parameters on signal-to-noise ratio da, Vol. 53, 2755-2764, 2015, doi: 10.1109/TGRS.2014.2364513.

3. Zhang, S., N. Roussel, K. Boniface, M. C. Ha, F. Frappart, J. Darrozes, F. Baup, and J. C. Calvet, "Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop," Hydrol. Earth Syst. Sci., Vol. 21, 4767-4784, 2017, doi: 10.5194/hess-21-4767-2017.
doi:10.5194/hess-21-4767-2017

4. Roussel, N., F. Frappart, G. Ramillien, J. Darrozes, F. Baup, L. Lestarquit, and M. C. Ha, "Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2 to 70," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 9, 4781-4794, 2016, doi: 10.1109/JSTARS.2016.2537847.
doi:10.1109/JSTARS.2016.2537847

5. Link, M., C. Montzka, T. Jagdhuber, S. S. Søjærg, S. Dill, M. Peichl, T. Meyer, and F. Jonard, "Impact of permittivity patterns on fully polarimetric brightness temperature signatures at L-band," Progress In Electromagnetics Research, Vol. 166, 75-93, 2019.
doi:10.2528/PIER19080204

6. Small, E. E., K. M. Larson, C. C. Chew, J. Dong, and T. E. Ochsner, "Validation of GPS-IR soil moisture retrievals: Comparison of different algorithms to remove vegetation effects," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 9, 4759-4770, 2016, doi: 10.1109/JSTARS.2015.2504527.
doi:10.1109/JSTARS.2015.2504527

7. Chew, C., E. E. Small, and K. M. Larson, "An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil," GPS Solut., Vol. 20, 525-537, 2016, doi: 10.1007/s10291-015-0462-4.
doi:10.1007/s10291-015-0462-4

8. Shekhar, S., R. Prakash, D. K. Pandey, A. Vidyarthi, S. Tyagi, D. Putrevu, and A. Misra, "Sensitivity of multipath peak frequency of Navigation with Indian Constellation (NavIC) towards surface soil moisture over bare land," Int. Geosci. Remote Sens. Symp., 7000-7003, 2021, doi: 10.1109/IGARSS47720.2021.9554474.

9. Lv, J., R. Zhang, J. Tu, M. Liao, J. Pang, B. Yu, K. Li, W. Xiang, Y. Fu, and G. Liu, "A GNSS-IR method for retrieving soil moisture content from integrated multi-satellite data that accounts for the impact of vegetation moisture content," Remote Sens, Vol. 13, 2021, doi: 10.3390/rs13132442.

10. Zhang, S., T.Wang, L.Wang, J. Zhang, J. Peng, and Q. Liu, "Evaluation of GNSS-IR for retrieving soil moisture and vegetation growth characteristics in wheat farmland," J. Surv. Eng., Vol. 147, 1-14, 2021, doi: 10.1061/(asce)su.1943-5428.0000355.

11. Yang, T., W. Wan, X. Chen, T. Chu, and Y. Hong, "Using BDS SNR observations to measure near-surface soil moisture fluctuations: Results from low vegetated surface," IEEE Geosci. Remote Sens. Lett., Vol. 14, 1308-1312, 2017, doi: 10.1109/LGRS.2017.2710083.
doi:10.1109/LGRS.2017.2710083

12. Rodriguez-Alvarez, N., A. Camps, M. Vall-Llossera, X. Bosch-Lluis, A. Monerris, I. Ramos-Perez, E. Valencia, J. Martinez-Fernandez, and G. Baroncini-Turric, "Land geophysical parameters retrieval using the interference pattern GNSS-R technique," IEEE Trans. Geosci. Remote Sens., Vol. 49, 71-84, 2011, doi: 10.1109/TGRS.2010.2049023.
doi:10.1109/TGRS.2010.2049023

13. Chamoli, V., R. Prakash, A. Vidyarthi, and A. Ray, "Capability of NavIC, an Indian GNSS constellation, for retrieval of surface soil moisture," Progress In Electromagnetics Research C, Vol. 106, 255-270, 2020.
doi:10.2528/PIERC20090904

14. Shekhar, S., R. Prakash, A. Vidyarthi, and D. K. Pandey, "Sensitivity analysis of Navigation with Indian Constellation (NavIC) derived multipath phase towards surface soil moisture over agricultural land," 2020 6th Int. Conf. Signal Process. Commun. ICSC 2020, 138-142, 2020, doi: 10.1109/ICSC48311.2020.9182714.

15. Zhang, Y., L. Jing, Y. Zhao, H. Ruan, L. Yang, and B. Sun, "GNSS-IR soil moisture inversion method based on random forest," China Satellite Navigation Conference (CSNC), 133-144, 2021.
doi:10.1007/978-981-16-3138-2_14

16. Zhang, S., J. C. Calvet, J. Darrozes, N. Roussel, F. Frappart, and G. Bouhours, "Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern france," Hydrol. Earth Syst. Sci., Vol. 22, 1931-1946, 2018, doi: 10.5194/hess-22-1931-2018.
doi:10.5194/hess-22-1931-2018

17. Wan, W., K. M. Larson, E. E. Small, C. C. Chew, and J. J. Braun, "Using geodetic GPS receivers to measure vegetation water content," GPS Solut., Vol. 19, 237-248, 2015, doi: 10.1007/s10291-014-0383-7.
doi:10.1007/s10291-014-0383-7

18. Shekhar, S., R. Prakash, D. K. Pandey, A. Vidyarthi, S. Tyagi, D. Putrevu, and A. Misra, "Development of soil moisture inversion model for bare soil using Navigation with Indian Constellation (NavIC)," IEEE Geosci. Remote Sens. Lett., Vol. 19, 1-5, 2022, doi: 10.1109/LGRS.2021.3090568.
doi:10.1109/LGRS.2021.3090568

19. Han, M., Y. Zhu, D. Yang, X. Hong, and S. Song, "A semi-empirical SNR model for soil moisture retrieval using GNSS SNR data," Remote Sens., Vol. 10, 1-19, 2018, doi: 10.3390/rs10020280.

20. Entekhabi, D., R. H. Reichle, R. D. Koster, and W. T. Crow, "Performance metrics for soil moisture retrievals and application requirements," J. Hydrometeorol., Vol. 11, 832-840, 2010, doi: 10.1175/2010JHM1223.1.
doi:10.1175/2010JHM1223.1