Vol. 109
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-03-22
A Miniaturized Band-Stop FSS Based on Pixelated Unitcell
By
Progress In Electromagnetics Research Letters, Vol. 109, 111-117, 2023
Abstract
As wireless devices become increasingly compact, portable, and accessible anywhere, there is a need to increase isolation between them and reduce frequency interference. The purpose of this paper is to suppress interference by using pixelated patterns on a single layer in a miniaturized unit cell. To miniaturize of unitcell, the surface was pixelated into 50 × 50 pixels with a resolution of 0.2 mm × 0.2 mm. The proposed unitcell occupies a small area of 0.06λ0 × 0.06λ0 at GSM frequency (f = 1.8 GHz). The pixelation of the surface allows the surface current to follow a long path. Therefore, unlike the previous works, the miniaturized structure is obtained using a 1D layer without any vias and lumped elements. A signi ficant advantage of this structure is that it is signi ficantly more miniaturized than the current state-of-the-art unitcells and allows for a wider range of applications. Full-wave simulation and measurement results are in good agreement with each other and show stopband at operation frequency. As a result, both simulation and measurement results show that the proposed structure has a dual-polarized characteristic with good angular stability under a variety of incidence angles.
Citation
Abedin Karimi, and Morteza Nadi, "A Miniaturized Band-Stop FSS Based on Pixelated Unitcell," Progress In Electromagnetics Research Letters, Vol. 109, 111-117, 2023.
doi:10.2528/PIERL22122403
References

1. Faenzi, M., G. Minatti, D. Gonzalez-Ovejero, F. Caminita, E. Martini, C. D. Giovampaola, and S. Maci, "Metasurface antennas: New models, applications and realizations," Scientific Reports, Vol. 9, No. 1, 1-14, 2019.
doi:10.1038/s41598-019-46522-z

2. Nadi, M., H. Rajabalipanah, A. Cheldavi, and A. Abdolali, "Flexible manipulation of emitting beams using single-aperture circularly polarized digital metasurface antennas: Multibeam radiation toward vortex-beam generation," Advanced Theory and Simulations, Vol. 3, No. 4, 1900225, 2020.
doi:10.1002/adts.201900225

3. Rajabalipanah, H., M. Nadi, A. Abdolali, and A. Cheldavi, "Highly efficient metaradiators with circular polarization," Journal of Applied Physics, Vol. 128, No. 11, 114503, 2020.
doi:10.1063/5.0011652

4. Nadi, M., S. H. Sedighy, and M. Khalaj-Amirhosseini, "Ultra wideband radar cross section reduction by using non-resonant unit cells," Scientific Reports, Vol. 10, No. 1, 1-10, 2020.
doi:10.1038/s41598-020-64362-0

5. Khalaj-Amirhosseini, M. and M. Nadi-Abiz, "Reducing the sidelobe level of reflectarray antennas using phase perturbation method," Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, 153-157, 2020.

6. Hashemi, S. and A. Abdolali, "Room shielding with frequency-selective surfaces for electromagnetic health application," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 291-298, 2017.
doi:10.1017/S1759078716000015

7. Mamedes, D. F., A. G. Neto, J. C. e Silva, and J. Bornemann, "Design of reconfigurable frequency-selective surfaces including the pin diode threshold region," IET Microwaves, Antennas & Propagation, Vol. 12, No. 9, 1483-1486, 2018.
doi:10.1049/iet-map.2017.0761

8. Fallah, M. and M. H. Vadjed-Samiei, "Designing a bandpass frequency selective surface based on an analytical approach using hexagonal patch-strip unit cell," Electromagnetics, Vol. 35, No. 1, 25-39, 2015.
doi:10.1080/02726343.2015.971662

9. Kocakaya, A. and G. Cakir, "Novel angular-independent higher order band-stop frequency selective surface for X-band applications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 1, 15-22, 2018.
doi:10.1049/iet-map.2016.0907

10. Lee, I. G. and I. P. Hong, "3D frequency selective surface for stable angle of incidence," Electronics Letters, Vol. 50, No. 6, 423-424, 2014.
doi:10.1049/el.2014.0053

11. Zhao, Z., A. Zhang, X. Chen, G. Peng, J. Li, H. Shi, and A. A. Kishk, "Bandpass FSS with zeros adjustable quasi-elliptic response," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1184-1188, 2019.
doi:10.1109/LAWP.2019.2911908

12. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "A reconfigurable FSS using a spring resonator element," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 781-784, 2013.
doi:10.1109/LAWP.2013.2270950

13. Fontoura, L. C. M. M., H. W. De Castro Lins, A. S. Bertuleza, A. G. Dassuncao, and A. G. Neto, "Synthesis of multiband frequency selective surfaces using machine learning with the decision tree algorithm," IEEE Access, Vol. 9, 85785-85794, 2021.
doi:10.1109/ACCESS.2021.3086777

14. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567

15. Zheng, S., Y. Yin, J. Fan, X. Yang, B. Li, and W. Liu, "Analysis of miniature frequency selective surfaces based on fractal antenna-filter-antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 240-243, 2012.
doi:10.1109/LAWP.2012.2189749

16. Yeganeh, A. N., S. Mohammad-Ali-Nezhad, S. H. Najmolhoda, and S. H. Sedighy, "Dual-band, dual-polarized, and compact frequency selective surface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 9, e21810, 2019.

17. Wei, P.-S., C.-N. Chiu, and T.-L. Wu, "Design and analysis of an ultraminiaturized frequency selective surface with two arbitrary stopbands," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 5, 1447-1456, 2018.
doi:10.1109/TEMC.2018.2864546

18. Zhao, P.-C., Z.-Y. Zong, W. Wu, B. Li, and D.-G. Fang, "Miniaturized-element bandpass FSS by loading capacitive structures," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3539-3544, 2019.
doi:10.1109/TAP.2019.2902633

19. Ghosh, S. and K. V. Srivastava, "An angularly stable dual-band FSS with closely spaced resonances using miniaturized unit cell," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 218-220, 2017.
doi:10.1109/LMWC.2017.2661683

20. Yan, M., S. Qu, J. Wang, J. Zhang, H. Zhou, H. Chen, and L. Zheng, "A miniaturized dual-band FSS with stable resonance frequencies of 2.4 GHz/5 GHz for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 895-898, 2014.
doi:10.1109/LAWP.2014.2320931

21. Al-Joumayly, M. A. and N. Behdad, "A generalized method for synthesizing low-profile, bandpass frequency selective surfaces with non-resonant constituting elements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 4033-4041, 2010.
doi:10.1109/TAP.2010.2078474

22. Hojjati, A., M. Soleimani, V. Nayyeri, and O. M. Ramahi, "Ternary optimization for designing metasurfaces," Scientific Reports, Vol. 11, No. 1, 1-9, 2021.
doi:10.1038/s41598-021-96564-5