Vol. 109
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-03-18
High Selectivity SIW Cavity Bandpass Filter Loaded CSRR with Perturbing Vias for Sub-6 GHz Applications
By
Progress In Electromagnetics Research Letters, Vol. 109, 103-110, 2023
Abstract
A narrowband, high selectivity Substrate Integrated Waveguide (SIW) bandpass filter with perturbing vias and CSRR is proposed for Sub-6 GHz applications. Firstly, the perturbing vias are positioned at the symmetrical axis of the SIW cavity which produces distinct electric field distribution for the first two modes. Next, the ground plane is engraved with the CSRR placed at an offset distance on either side of the perturbing vias, forming the coupling arrangement that combines mixed and magnetic, electric coupling. The presence of CSRRs resulted in a narrowband filter. The filter's center frequency is 4.947 GHz with a fractional bandwidth of 1.16%. By comparing the fabricated filter to an existing SIW conventional multi-cavity or cascaded resonator, a size reduction of 117% is achieved. The simulated and measured results agree with each other.
Citation
Namanathan Praveena, and Nagarajan Gunavathi, "High Selectivity SIW Cavity Bandpass Filter Loaded CSRR with Perturbing Vias for Sub-6 GHz Applications," Progress In Electromagnetics Research Letters, Vol. 109, 103-110, 2023.
doi:10.2528/PIERL22122008
References

1. Huang, J., G. Dong, J. Cai, H. Li, and G. Liu, "A quad-port dual-band MIMO antenna array for 5G smartphone applications," Electronics, Vol. 10, No. 5, 542-547, 2021.
doi:10.3390/electronics10050542

2. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 10, 593-596, 2003.
doi:10.1109/TMTT.2002.807820

3. Matthaei, G. L., E. M. T. Jones, and L. Young, Microwave Filters, Impedance-matching Networks, and Coupling Structures, 217-228, Artech House, 1980.

4. Kumar, A., D. Chaturvedi, and S. I. Rosaline, "Design of antenna-multiplexer for seamless on-body Internet of Medical Things (IoMT) connectivity," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 8, 3395-3399, Aug. 2022.
doi:10.1109/TCSII.2022.3170513

5. Praveena, N. and N. Gunavathi, "Realization of dual-mode, high-selectivity SIW cavity bandpass filter by perturbing circular shape vias," Appl. Phys. A, Vol. 128, No. 773, 2022.

6. Soundarya, G. and N. Gunavathi, "Compact dualband SIW bandpass filter using CSRR and DGS structure resonators," Progress In Electromagnetics Research Letters, Vol. 101, 79-87, 2021.
doi:10.2528/PIERL21091301

7. Zhu, F., G. Q. Luo, B. You, X. H. Zhang, and K. Wu, "Planar dual-mode bandpass filters using perturbed substrate-integrated waveguide rectangular cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 6, 3048-3057, 2021.
doi:10.1109/TMTT.2021.3074617

8. Zhang, H., W. Kang, and W. Wu, "Miniaturized dual-band SIW filters using E-shaped slotlines with controllable center frequencies," IEEE Microw. Wireless Compon. Letters, Vol. 28, No. 4, 311-313, 2018.
doi:10.1109/LMWC.2018.2811251

9. Khan, A. A. and M. K. Mandal, "Narrowband substrate integrated waveguide bandpass filter with high selectivity," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 5, 416-418, 2018.
doi:10.1109/LMWC.2018.2820605

10. Liu, Q., D. Zhang, M. Tang, H. Deng, and D. Zhou, "A class of box-like bandpass filters with wide stopband based on new dual-mode rectangular SIW cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, 101-110, 2021.
doi:10.1109/TMTT.2020.3037497

11. Liu, Z., G. Xiao, and L. Zhu, "Triple-mode bandpass filters on CSRR loaded substrate integrated waveguide cavities," IEEE Trans. Compon., Packag., Manuf. Technol., Vol. 6, 1099-1105, 2016.
doi:10.1109/TCPMT.2016.2574562

12. Geng, Q. F., H. J. Guo, Y. Y. Zhu, et al. "A novel dual-band filter based on single-cavity CTSRR-loaded triangular substrate-integrated waveguide," International Journal of Microwave and Wireless Technologies, Vol. 11, 894-898, 2019.
doi:10.1017/S1759078719000679

13. Wu, L. S., X. L. Zhou, Q. F. Wei, et al. "An extended doublet Substrate Integrated Waveguide (SIW) bandpass filter with a Complementary Split Ring Resonator (CSRR)," IEEE Microwave and Wireless Components Letters, Vol. 19, 777-779, 2009.

14. Huang, X., X. Guan, B. Ren, and S. Wan, "A novel HTS ultra-narrowband bandpass filter using hairpin meander-line resonator with gradient line-width," IEEE Transactions on Applied Superconductivity, Vol. 33, No. 2, 2022.

15. Maximo-Gutierrez, C., J. Hinojosa, and A. Alvarez-Melcon, "Narrowband and wideband bandpass filters based on empty substrate integrated waveguide loaded with dielectric elements," IEEE Access, Vol. 9, 32094-32105, 2021.
doi:10.1109/ACCESS.2021.3060516

16. You, C. J., Z. N. Chen, X. W. Zhu, and K. Gong, "Single-layered SIW post-loaded electric coupling-enhanced structure and its filter applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 1, 125-130, 2013.
doi:10.1109/TMTT.2012.2228667

17. Zakharov, A., S. Rozenko, S. Litvintsev, and M. Ilchenko, "Hairpin resonators in varactor-tuned microstrip bandpass filters," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 10, 1874-1878, 2020.
doi:10.1109/TCSII.2019.2953247

18. Shen, M., Z. Shao, X. Du, Z. He, and X. Li, "Ka-band multilayered substrate integrated waveguide narrowband filter for system-in-package applications," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1395-1398, 2016.
doi:10.1002/mop.29833