Vol. 115
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-02-21
Thermoacoustic Imaging with Magnetic Nanoparticles Under Envelope Short Pulse Alternating Magnetic Field Based on Magnetic Susceptibility Distribution Variation
By
Progress In Electromagnetics Research M, Vol. 115, 93-105, 2023
Abstract
The magnetically mediated thermoacoustic imaging with magnetic nanoparticles (MNPs), which is excited by nonuniform pulsed envelope magnetic field, is constructed here, and the results of the magnetic susceptibility distribution of nanoparticles are extracted. In this paper, the theoretical model of the nonuniform magnetic field based on space-time separation is solved, and the Rosensweig model is used to obtain the heat generation of MNPs under the excitation of the pulsed envelope magnetic field. To solve the inverse problem, the heat source distribution is calculated by the time inversion method according to the sound pressure propagation formula under adiabatic conditions. After filtering out the effect of the non-uniform magnetic field, the magnetic susceptibility distribution can be obtained. The reconstruction results from simulation and experiment are consistent with the original distribution of MNPs and the distribution of the magnetic susceptibility. This method is expected to be applied to the precise diagnosis and treatment of tumors and provide a new idea for the precise localization and distribution image reconstruction of nanoparticles in vivo.
Citation
Xingsheng Ni, Hongjia Liu, Yanhong Li, and Guo-Qiang Liu, "Thermoacoustic Imaging with Magnetic Nanoparticles Under Envelope Short Pulse Alternating Magnetic Field Based on Magnetic Susceptibility Distribution Variation," Progress In Electromagnetics Research M, Vol. 115, 93-105, 2023.
doi:10.2528/PIERM22122002
References

1. Hiergeist, R., W. Andra, N. Buske, R. Hergt, I. Hilger, U. Richter, and W. Kaiser, "Application of magnetite ferrofluids for hyperthermia," J. Magn. Magn. Mater., Vol. 201, No. 1, 420-422, 1999.
doi:10.1016/S0304-8853(99)00145-6

2. Hergt, R., W. Andra, C. G. d'Ambly, I. Hilger, W. A. Kaiser, U. Richter, and H. G. Schmidt, "Physical limits of hyperthermia using magnetite fine particles," IEEE Trans. Magn., Vol. 34, No. 5, 3745-3754, 1998.
doi:10.1109/20.718537

3. Carrey, J., B. Mehdaoui, and M. Respaud, "Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization," J. Appl. Phys., Vol. 109, 083921, 2011.
doi:10.1063/1.3551582

4. Chen, R., G. Romero, M. G. Christiansen, A. Mohr, and P. Anikeeva, "Wireless magnetothermal deep brain stimulation," Science, Vol. 347, No. 6229, 1477-1480, 2015.
doi:10.1126/science.1261821

5. Wang, H., S. C. Zhao, J. Zhou, K. P. Zhu, X. Cui, W. H. Huang, M. N. Rahaman, C. Q. Zhang, and D. P. Wang, "Biocompatibility and osteogenic capacity of borosilicate bioactive glass scaffolds loaded with Fe3O4 magnetic nanoparticles," J. Mater. Chem. B, Vol. 3, No. 21, 4377-4387, 2015.
doi:10.1039/C5TB00062A

6. Beck, M. M., C. Lammel, and B. Gleich, "Improving heat generation of magnetic nanoparticles by pre-orientation of particles in a static three tesla magnetic field," J. Magn. Magn. Mater., Vol. 427, 195-199, 2017.
doi:10.1016/j.jmmm.2016.11.005

7. Dutz, S. and R. Hergt, "Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy," Int. J. Hyperther., Vol. 29, No. 8, 790-800, 2013.
doi:10.3109/02656736.2013.822993

8. Mura, S., J. Nicolas, and P. Couvreur, "Stimuli-responsive nanocarriers for drug delivery," Nat. Mater., Vol. 12, No. 11, 991-1003, 2013.
doi:10.1038/nmat3776

9. Bao, J., S. Guo, X. Zu, Y. Zhuang, D. Fan, Y. Zhang, Y. Shi, Z. Ji, J. Cheng, and X. Pang, "Polypyrrole-coated magnetite vortex nanoring for hyperthermia-boosted photothermal/magnetothermal tumor ablation under photoacoustic/magnetic resonance guidance," Front Bioeng. Biotechnol., Vol. 9, 721617, 2021.
doi:10.3389/fbioe.2021.721617

10. Thirunavukkarasu, G. K., K. Cherukula, H. Lee, Y. Y. Jeong, I.-K. Park, and J. Y. Lee, "Magnetic field-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy," Biomaterials, Vol. 180, 240-252, 2018.
doi:10.1016/j.biomaterials.2018.07.028

11. Feng, X. H., F. Gao, Y. J. Zheng, and , "Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles," Opt. Lett., Vol. 39, No. 12, 3414-3417, 2014.
doi:10.1364/OL.39.003414

12. Piao, D. Q., R. A. Towner, N. Smith, and W. R. Chen, "Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: A theoretical feasibility analysis," Med. Phys., Vol. 40, No. 6, 063301, 2013.
doi:10.1118/1.4804056

13. Yuan, C., B. H. Qin, H. Qin, and D. Xing, "Increasing dielectric loss of a graphene oxide nanoparticle to enhance the microwave thermoacoustic imaging contrast of breast tumor," Nanoscale, Vol. 11, No. 46, 22222-22229, 2019.
doi:10.1039/C9NR06549K

14. Feng, X. H., F. Gao, and Y. J. Zheng, "Magnetically mediated thermoacoustic imaging toward deeper penetration," Appl. Phys. Lett., Vol. 103, 083704, 2013.
doi:10.1063/1.4819391

15. Wen, L., S. Yang, J. Zhong, Q. Zhou, and D. Xing, "Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles," Theranostics, Vol. 7, No. 7, 1976-1989, 2017.
doi:10.7150/thno.17846

16. Feng, X. H., F. Gao, and Y. J. Zheng, "Modulatable magnetically mediated thermoacoustic imaging with magnetic nanoparticles," Appl. Phys. Lett., Vol. 106, 153702, 2015.
doi:10.1063/1.4918582

17. Li, Y., G. Liu, J. Song, and H. Xia, "Imaging method and experimental research on thermoacoustic imaging with current injection," High Voltage Engineering, Vol. 46, No. 12, 4113-4119, 2020.

18. Nan, H. and A. Arbabian, "Peak-power-limited frequency-domain microwave-induced thermoacoustic imaging for handheld diagnostic and screening tools," IEEE Trans. Microwave Theory Tech., Vol. 65, No. 7, 2607-2616, 2017.
doi:10.1109/TMTT.2016.2637909

19. Daqing, P., "Magneto-thermal-acoustic differential-frequency imaging of magnetic nanoparticle with magnetic spatial localization: A theoretical prediction," Energy Based Treatment of Tissue and Assessment IX, Proceedings of SPIE 10066, 2017.

20. Zheng, Y., F. Gao, and X. Feng, "Electromagnetic acoustics sensing and imaging for biomedical applications," 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), 1-4, 2014.

21. Minghua, X. and L. V. Wang, "Time-domain reconstruction for thermoacoustic tomography in a spherical geometry," IEEE Trans. Med. Imaging, Vol. 21, No. 7, 814-822, 2002.
doi:10.1109/TMI.2002.801176

22. Liu, H., Y. Li, and G. Liu, "Thermoacoustic tomography from magnetic nanoparticles by single-pulse magnetic field," Med. Phys., Vol. 49, No. 1, 521-531, 2022.
doi:10.1002/mp.15383

23. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues. 1. Literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

24. Li, Y., G. Liu, J. Song, and H. Xia, "Influence exerted by bone-containing target body on thermoacoustic imaging with current injection," Chin. Phys. B, Vol. 28, No. 4, 044302, 2019.
doi:10.1088/1674-1056/28/4/044302

25. Rosensweig, R. E., "Heating magnetic fluid with alternating magnetic field," J. Magn. Magn. Mater., Vol. 252, 370-374, 2002.
doi:10.1016/S0304-8853(02)00706-0

26. Li, Y., G. Liu, and J. Song, "Magnetically mediated thermoacoustic imaging with single coil based on non-uniform magnetic fild excitation," J. Appl. Phys., Vol. 128, 174901, 2020.
doi:10.1063/5.0017237