1. Hiergeist, R., W. Andra, N. Buske, R. Hergt, I. Hilger, U. Richter, and W. Kaiser, "Application of magnetite ferrofluids for hyperthermia," J. Magn. Magn. Mater., Vol. 201, No. 1, 420-422, 1999.
doi:10.1016/S0304-8853(99)00145-6
2. Hergt, R., W. Andra, C. G. d'Ambly, I. Hilger, W. A. Kaiser, U. Richter, and H. G. Schmidt, "Physical limits of hyperthermia using magnetite fine particles," IEEE Trans. Magn., Vol. 34, No. 5, 3745-3754, 1998.
doi:10.1109/20.718537
3. Carrey, J., B. Mehdaoui, and M. Respaud, "Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization," J. Appl. Phys., Vol. 109, 083921, 2011.
doi:10.1063/1.3551582
4. Chen, R., G. Romero, M. G. Christiansen, A. Mohr, and P. Anikeeva, "Wireless magnetothermal deep brain stimulation," Science, Vol. 347, No. 6229, 1477-1480, 2015.
doi:10.1126/science.1261821
5. Wang, H., S. C. Zhao, J. Zhou, K. P. Zhu, X. Cui, W. H. Huang, M. N. Rahaman, C. Q. Zhang, and D. P. Wang, "Biocompatibility and osteogenic capacity of borosilicate bioactive glass scaffolds loaded with Fe3O4 magnetic nanoparticles," J. Mater. Chem. B, Vol. 3, No. 21, 4377-4387, 2015.
doi:10.1039/C5TB00062A
6. Beck, M. M., C. Lammel, and B. Gleich, "Improving heat generation of magnetic nanoparticles by pre-orientation of particles in a static three tesla magnetic field," J. Magn. Magn. Mater., Vol. 427, 195-199, 2017.
doi:10.1016/j.jmmm.2016.11.005
7. Dutz, S. and R. Hergt, "Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy," Int. J. Hyperther., Vol. 29, No. 8, 790-800, 2013.
doi:10.3109/02656736.2013.822993
8. Mura, S., J. Nicolas, and P. Couvreur, "Stimuli-responsive nanocarriers for drug delivery," Nat. Mater., Vol. 12, No. 11, 991-1003, 2013.
doi:10.1038/nmat3776
9. Bao, J., S. Guo, X. Zu, Y. Zhuang, D. Fan, Y. Zhang, Y. Shi, Z. Ji, J. Cheng, and X. Pang, "Polypyrrole-coated magnetite vortex nanoring for hyperthermia-boosted photothermal/magnetothermal tumor ablation under photoacoustic/magnetic resonance guidance," Front Bioeng. Biotechnol., Vol. 9, 721617, 2021.
doi:10.3389/fbioe.2021.721617
10. Thirunavukkarasu, G. K., K. Cherukula, H. Lee, Y. Y. Jeong, I.-K. Park, and J. Y. Lee, "Magnetic field-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy," Biomaterials, Vol. 180, 240-252, 2018.
doi:10.1016/j.biomaterials.2018.07.028
11. Feng, X. H., F. Gao, Y. J. Zheng, and , "Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles," Opt. Lett., Vol. 39, No. 12, 3414-3417, 2014.
doi:10.1364/OL.39.003414
12. Piao, D. Q., R. A. Towner, N. Smith, and W. R. Chen, "Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: A theoretical feasibility analysis," Med. Phys., Vol. 40, No. 6, 063301, 2013.
doi:10.1118/1.4804056
13. Yuan, C., B. H. Qin, H. Qin, and D. Xing, "Increasing dielectric loss of a graphene oxide nanoparticle to enhance the microwave thermoacoustic imaging contrast of breast tumor," Nanoscale, Vol. 11, No. 46, 22222-22229, 2019.
doi:10.1039/C9NR06549K
14. Feng, X. H., F. Gao, and Y. J. Zheng, "Magnetically mediated thermoacoustic imaging toward deeper penetration," Appl. Phys. Lett., Vol. 103, 083704, 2013.
doi:10.1063/1.4819391
15. Wen, L., S. Yang, J. Zhong, Q. Zhou, and D. Xing, "Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles," Theranostics, Vol. 7, No. 7, 1976-1989, 2017.
doi:10.7150/thno.17846
16. Feng, X. H., F. Gao, and Y. J. Zheng, "Modulatable magnetically mediated thermoacoustic imaging with magnetic nanoparticles," Appl. Phys. Lett., Vol. 106, 153702, 2015.
doi:10.1063/1.4918582
17. Li, Y., G. Liu, J. Song, and H. Xia, "Imaging method and experimental research on thermoacoustic imaging with current injection," High Voltage Engineering, Vol. 46, No. 12, 4113-4119, 2020.
18. Nan, H. and A. Arbabian, "Peak-power-limited frequency-domain microwave-induced thermoacoustic imaging for handheld diagnostic and screening tools," IEEE Trans. Microwave Theory Tech., Vol. 65, No. 7, 2607-2616, 2017.
doi:10.1109/TMTT.2016.2637909
19. Daqing, P., "Magneto-thermal-acoustic differential-frequency imaging of magnetic nanoparticle with magnetic spatial localization: A theoretical prediction," Energy Based Treatment of Tissue and Assessment IX, Proceedings of SPIE 10066, 2017.
20. Zheng, Y., F. Gao, and X. Feng, "Electromagnetic acoustics sensing and imaging for biomedical applications," 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), 1-4, 2014.
21. Minghua, X. and L. V. Wang, "Time-domain reconstruction for thermoacoustic tomography in a spherical geometry," IEEE Trans. Med. Imaging, Vol. 21, No. 7, 814-822, 2002.
doi:10.1109/TMI.2002.801176
22. Liu, H., Y. Li, and G. Liu, "Thermoacoustic tomography from magnetic nanoparticles by single-pulse magnetic field," Med. Phys., Vol. 49, No. 1, 521-531, 2022.
doi:10.1002/mp.15383
23. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues. 1. Literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001
24. Li, Y., G. Liu, J. Song, and H. Xia, "Influence exerted by bone-containing target body on thermoacoustic imaging with current injection," Chin. Phys. B, Vol. 28, No. 4, 044302, 2019.
doi:10.1088/1674-1056/28/4/044302
25. Rosensweig, R. E., "Heating magnetic fluid with alternating magnetic field," J. Magn. Magn. Mater., Vol. 252, 370-374, 2002.
doi:10.1016/S0304-8853(02)00706-0
26. Li, Y., G. Liu, and J. Song, "Magnetically mediated thermoacoustic imaging with single coil based on non-uniform magnetic fild excitation," J. Appl. Phys., Vol. 128, 174901, 2020.
doi:10.1063/5.0017237