Vol. 116
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-04-19
Multiphysics Analysis of High Frequency Transformers Used in SST with Different Magnetic Materials
By
Progress In Electromagnetics Research M, Vol. 116, 129-143, 2023
Abstract
Solid State Transformers (SSTs) are emerging as the major component of smart grid system. High Frequency Transformer (HFT) is the key element of SST. The optimum design of SST is a critical task due to the complex design of magnetic, electric and dielectric circuits of high frequency transformer and due to the design of power electronic circuits used at either sides of HFT. The most significant among above is the design of magnetic circuit and the possibility of using different magnetic materials for high frequency application. This paper discusses the performance analysis of HFT for different magnetic materials used for core construction. The magnetic materials considered in this analysis are amorphous, nanocrystalline and si-steel. Optimum HFT design is selected from a set of designs using an iterative algorithm, considering each core material separately. Validation of the design is done in Finite Element Method (FEM) analysis software. The design of a high frequency transformer, which is integrated in 1000 kVA 11 kV/415 V SST, is investigated both analytically and numerically, with optimum designs developed using three core materials.
Citation
Sherin Joseph, Shajimon Kalayil John, Kudilil Prasad Pinkymol, Jineeth Joseph, and Kappamadathil Raman Muraleedharan Nair, "Multiphysics Analysis of High Frequency Transformers Used in SST with Different Magnetic Materials," Progress In Electromagnetics Research M, Vol. 116, 129-143, 2023.
doi:10.2528/PIERM22121901
References

1. Wang, Q., J. Qu, B. Wang, P. Wang, and T. Yang, "Green technology innovation development in China in 1990-2015," Science of The Total Environment, Vol. 696, 134008, ISSN 0048-9697, 2019, https://doi.org/10.1016/j.scitotenv.2019.134008.
doi:10.1016/j.scitotenv.2019.134008

2. Gao, K., Y. Huang, A. Sadollah, et al. "A review of energy-efficient scheduling in intelligent production systems," Complex Intell. Syst., Vol. 6, 237-249, 2020, https://doi.org/10.1007/s40747019-00122-6.
doi:10.1007/s40747-019-00122-6

3. Sorrell, S., "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Vol. 47, 74-82, ISSN 1364-0321, 2015, https://doi.org/10.1016/j.rser.2015.03.002.
doi:10.1016/j.rser.2015.03.002

4. Sato, T., D. M. Kammen, B. Duan, M. Macuha, Z. Zhou, J. Wu, M. Tariq, and S. A. Asfaw, "Smart grid standards: Specifications, requirements, and technologies,", ISBN: 978-1-118-65369-2.

5. Hossain, R., M. Amanullah, T. O. Aman, and A. Shawkat, Smart Grid, 2013, 10.1007/978-1-4471-5210-1_2.

6. Shadfar, H., G. P. Mehrdad, and A. F. Asghar, "Solid-state transformers: An overview of the concept, topology, and its applications in the smart grid," International Transactions on Electrical Energy Systems, Vol. 31, 2021, 10.1002/2050-7038.12996.
doi:10.1002/2050-7038.12996

7. Villar, I., U. Viscarret, I. Etxeberria-Otadui, and A. Rufer, "Transient thermal model of a medium frequency power transformer," 2008 34th Annual Conference of IEEE Industrial Electronics, 1033-1038, 2008, doi: 10.1109/IECON.2008.4758096.
doi:10.1109/IECON.2008.4758096

8. Rashidi, M., N. N. Altin, S. S. Ozdemir, A. Bani-Ahmed, and A. Nasiri, "Design and development of a high-frequency multiport solid-state transformer with decoupled control scheme," IEEE Transactions on Industry Applications, Vol. 55, No. 6, 7515-7526, Nov.-Dec. 2019, doi: 10.1109/TIA.2019.2939741.
doi:10.1109/TIA.2019.2939741

9. Nair, K. R. M., Power and Distribution Transformers: Practical Design Guide, 1st Ed., CRC Press, 2021, https://doi.org/10.1201/9781003088578.
doi:10.1201/9781003088578

10. Petkov, R., "Optimum design of a high-power, high-frequency transformer," IEEE Transactions on Power Electronics, Vol. 11, No. 1, 33-42, Jan. 1996, doi: 10.1109/63.484414.
doi:10.1109/63.484414

11. Guerra, G. and J. A. Martinez-Velasco, "A solid state transformer model for power flow calculations," International Journal of Electrical Power & Energy Systems, Vol. 89, 40-51, 2017, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2017.01.005.
doi:10.1016/j.ijepes.2017.01.005

12. Paul, A. K., "Practical study of mixed-core high frequency power transformer," Magnetism, Vol. 2, 306-327, 2022, https://doi.org/10.3390/magnetism2030022.
doi:10.3390/magnetism2030022

13. Fouineau, A., G. Martin, L. Bruno, R. Marie, and S. Fabien, "A medium frequency transformer design tool with methodologies adapted to various structures,", 1, 2020, 10.1109/EVER48776.2020.9243104.

14. Joseph, S., A. K. Abraham, P. H. Raj, J. Joseph, and K. R. M. Nair, "An iterative algorithm for optimum design of high frequency transformer in SST application," IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 1538-1543, IEEE, 2020.
doi:10.1109/IECON43393.2020.9254914

15. Abraham, A. K., S. Joseph, K. P. Pinkymol, J. Joseph, and K. R. M. Nair, "Optimum high frequency transformer design using iterative algorithm and validation of the design by finite element analysis method," 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), 1-6, 2022, doi: 10.1109/PESGRE52268.2022.9715797.

16. Mogorovic, M. and D. Dujic, "100 kW, 10 kHz medium-frequency transformer design optimization and experimental verification," IEEE Transactions on Power Electronics, Vol. 34, No. 2, 1696-1708, Feb. 2019, doi: 10.1109/TPEL.2018.2835564.
doi:10.1109/TPEL.2018.2835564

17. "Super core Electrical steel sheets for high-frequency application," JFE Steel Corporation, [online] Available: https://www.jfe-steel.co.jp/en/products/electrical/catalog/f1e-002.pdf.

18. "FT-3TL core,", data sheet - Hitachi metals, June 2019.

19. "Powerlite amorphous alloy 2605SA1,", data sheet - Metglas Inc., May 2004.

20. IEC 60076-3 "Power transformers - Part 3: Insulation levels, dielectric tests and external clearances in air,", 2013.

21. IEC 60076-1 "Power transformers - Part 1: General,", 2011.

22. Montoya, R. J. G., "High-frequency transformer design for solid-state transformers in electric power distribution systems,", University of Arkansas, 2015.

23. Del Vecchio, R. M., B. Poulin, P. Feghali, D. Shah, and R. Ahuja, Transformer Design Principles: With Applications to Core-form Power Transformers, 2nd Ed., CRC Press, 2010, https://doi.org/10.1201/EBK1439805824.

24. IEC 60076-11 "Power transformers - Part 11: Dry type Transformers,", 2018.