Vol. 99
Latest Volume
All Volumes
PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-04-02
Dual-Band Hexagonal SRR Antennas and Their Applications in SIMO and MISO-Based WLAN/WiMAX Systems
By
Progress In Electromagnetics Research B, Vol. 99, 139-157, 2023
Abstract
This article presents the performance of a hexagonal split-ring resonator (H-SRR) antenna in the 2.4/5.2 GHz bands and evaluation of channel capacity for single-input multiple-output (SIMO) and multiple-input single-output (MISO) systems. The proposed antenna consists of two hexagonal-shaped split-ring resonators for dual-band operation with higher gain and metallic loadings between the rings to achieve a wide impedance bandwidth. Impedance modeling of the proposed antennas confirms the role of conductance and inductance of metallic loading for enhancing the antenna characteristics, and thus, the fabricated H-SRR antenna achieves dual-band features with improved impedance bandwidth of 50%/76% and a gain of 2.32/2.57 dB at 2.4/5.2 GHz frequency bands. The performance of the hexagonal SRR antenna is then investigated for space diversity applications in the 1×3 SIMO and 3×1 MISO systems with circular SRR antennas. In linear and spherical arrangements of the antennas, the channel capacity is found in the range of 2.7 to 4.8 Mbps at the 2.4/5.2 GHz bands, which also confirms its dependency on the number of antennas as well as on the placement of antennas.
Citation
Puneet Sehgal, and Kamlesh Patel, "Dual-Band Hexagonal SRR Antennas and Their Applications in SIMO and MISO-Based WLAN/WiMAX Systems," Progress In Electromagnetics Research B, Vol. 99, 139-157, 2023.
doi:10.2528/PIERB22121504
References

1. Shah, C. R., "Performance and comparative analysis of SISO, SIMO, MISO and MIMO," International Journal of Wirel. Commun. Simul., Vol. 9, No. 1, 1-4, 2017.
doi:

504 Gateway Time-out


2. Alrubei, M. A. T., I. A. Alshimaysawe, A. N. Hassan, and A. H. K. Khwayyir, "Capacity analysis and performance comparison of SISO, SIMO, MISO & MIMO systems," Journal of Physics Conference Series, Vol. 1530, No. 1, 12077, 2020.
doi:10.1088/1742-6596/1530/1/012077

3. Bialkowski, M. E., "Research into multiple-element antennas to enhance performance of wireless communication systems," International Conference on Microwaves, Radar & Wireless Communications, 1071-1082, 2006.
doi:

4. Zhang, H. and H. Dai, "On the capacity of distributed MIMO systems," Conference on Information Sciences and Systems, 1-5, Princeton University, 2004.

5. Shr, K. T., H. D. Chen, and Y. H. Huang, "A low-complexity Viterbi decoder for space-time trellis code," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 57, No. 4, 873-885, 2010.
doi:10.1109/TCSI.2009.2027648

6. Ghayoula, E., A. Bouallegue, and R. Ghayoula, "Capacity and performance of MIMO systems for wireless communications," Journal of Engineering Science and Technology Review, Vol. 7, No. 3, 108-111, 2014.
doi:10.25103/jestr.073.17

7. Sengar, K., N. Rani, A. Singhal, et al. "Study and capacity evaluation of SISO, MISO and MIMO RF wireless communication systems," International Journal of Engineering Trends and Technology, Vol. 9, No. 9, 436-440, 2014.
doi:10.14445/22315381/IJETT-V9P283

8. Giri, N. C., A. Sahoo, and J. R. Swain, "Capacity & performance comparison of SISO and MIMO system for next-generation network (NGN)," International Journal of Advanced Research in Computer Engineering & Technology, Vol. 3, No. 9, 30131-33035, 2014.

9. Janaswamy, R., Radio Wave Propagation and Smart Antennas for Wireless Communications, 1st Edition, Springer Science & Business Media, 2001.

10., Available at: https://www.comm.utoronto.ca/~rsadve/Notes/DiversityReceive.pdf..

11. Verdu, S., Multiuser Detection, Cambridge University Press, 1998.

12., Available at: https://www.analogictips.com/signal-channel-diversity-fading-part-1-space- diversity/.

13. Godara, L. C., Handbook of Antennas in Wireless Communications, CRC Press, 2018.
doi:10.1201/9781315220031

14. Eldek, A., "Numerical analysis of a small ultra wideband microstrip-fed tap monopole antenna," Progress In Electromagnetics Research, Vol. 65, 59-69, 2006.
doi:10.2528/PIER06082305

15. Benkhadda, O., S. Ahmad, M. Saih, et al. "Compact broadband antenna with Vicsek fractal slots for WLAN and WiMAX applications," Applied Sciences, Vol. 12, No. 3, 1142, 2022.
doi:10.3390/app12031142

16. Yamac, Y. E. and S. C. Basaran, "A compact dual-band implantable antenna based on split-ring resonators with meander line slots," 22nd International Conference on Applied Electromagnetics and Communications, 1-3, 2016.

17. Zaker, R., C. Ghobadi, and J. Nourinia, "A modi ed microstrip-fed two-step tapered monopole antenna for UWB and WLAN applications," Progress In Electromagnetics Research, Vol. 77, 137-148, 2007.
doi:10.2528/PIER07080701

18. Basaran, S. C. and K. Sertel, "Dual wideband CPW-fed monopole antenna with split-ring resonators," Microwave and Optical Technology Letters, Vol. 55, No. 9, 2088-2092, 2013.
doi:10.1002/mop.27789

19. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

20. Sehgal, P. and K. Patel, "Dual-wideband CPW-fed monopole antenna with circular split-ring resonators," 7th International Conference on Signal and Integrated Networks, 1078-1083, 2020.

21. Sehgal, P. and K. Patel, "Performance analysis and impedance modeling of rectangular and circular split-ring resonator antennas in 2.4/5.2 GHz bands," Progress In Electromagnetics Research C, Vol. 117, 159-171, 2022.

22. Jagadish, M. and A. S. Pradeep, "Design of hexagonal-shaped split ring resonator for multi-resonant behaviour," Bonfring International Journal of Research in Communication Engineering, Vol. 6, 20-23, 2016.
doi:10.9756/BIJRCE.8193

23. Singh, A. and S. K. Sharma, "Calculation of resonant frequency of hexagonal split ring resonator using ANN," International Journal of Research in Engineering and Technology, Vol. 3, 144-147, 2014.
doi:10.15623/ijret.2014.0311022

24. Rajni, M. A., "An accurate approach of mathematical modeling of SRR and SR for metamaterials," Journal of Engineering Science and Technology Review, Vol. 9, 82-86, 2016.
doi:10.25103/jestr.096.11

25. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "A miniaturized printed monopole antenna loaded with hexagonal complementary split-ring resonators for multiband operations," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 7, 21401, 2018.
doi:10.1002/mmce.21401

26. Min, H., J. Lee, and S. Park, "Capacity enhancement using an interference-limited area for device- to-device uplink underlaying cellular networks," IEEE Transactions on Wireless Communications, Vol. 10, No. 12, 3995-4000, 2011.
doi:10.1109/TWC.2011.100611.101684

27. Marques, R., F. Mesa, and J. Martel, "Comparative analysis of edge and broadside-coupled split ring resonators for metamaterial design --- Theory and experiments," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2572-2581, 2003.

28. Cole, H., Z. Hu, and Y. Wang, "Operating range evaluation of RFID system," Advanced Radio Frequency Identi cation Design and Applications, Stevan Preradovic, 1-28, InTech, 2011.

29. Kaushal, V., A. Birwal, and K. Patel, "Path loss of two-port circular-ring slot antenna for RFID applications," IEEE International Conference on RFID Technology and Applications (RFID-TA), 120-123, Delhi, 2021.

30. Islam, M. T., F. B. Ashraf, T. Alam, et al. "A compact ultrawideband antenna based on hexagonal split-ring resonator for pH sensor application," Sensors, Vol. 18, No. 9, 2959, 2018.

31. Swetha, A. and M. Vanidivyatha, "CPW fed antenna inspired by a broad side coupled hexagonal SRR for X-band applications," Proceedings of Advances in Decision Sciences, Image Processing, Security and Computer Vision International Conference on Emerging Trends in Engineering (ICETE), Vol. 2, 52-60, 2019.

32. Saktioto, Y. Soerbakti, R. F. Syahputra, et al. "Improvement of low-pro le microstrip antenna performance by hexagonal-shaped SRR structure with DNG metamaterial characteristic as UWB application," Alexandria Engineering Journal, Vol. 61, No. 6, 2022.

33. Naik, K. K., T. V. Ramakrishna, and T. L. Charan, "Design a tri-band hexagonal patch antenna for wireless applications," Energy Systems, Drives and Automations, 659-667, 2020.