Vol. 115
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-01-23
A Novel Decoupling Technique for Single-Layered Closely-Spaced Patch Antenna Arrays
By
Progress In Electromagnetics Research M, Vol. 115, 35-44, 2023
Abstract
A new technique to reduce the mutual coupling between closely-spaced, single-layered patch antenna elements is presented. The proposed design comprises an integrated novel decoupling structure to generate an out-of-phase decoupling signal to effectively lower the coupling between the elements. In addition, coplanar L-probes and interdigital filter shaped slits on the ground plane are incorporated to further improve the isolation. The realized isolation level is about 28 dB at the frequency of operation. This is a significant achievement for a single-layered low-profile structure, wherein the center-to-center element spacing is only around 0.25λ0, and more importantly, no shorting vias are used.
Citation
Sai Radavaram, and Maria Pour, "A Novel Decoupling Technique for Single-Layered Closely-Spaced Patch Antenna Arrays," Progress In Electromagnetics Research M, Vol. 115, 35-44, 2023.
doi:10.2528/PIERM22120220
References

1. Larsson, E. G., O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Comm. Magz., Vol. 52, No. 2, 186-195, Feb. 2014.
doi:10.1109/MCOM.2014.6736761

2. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, Jan. 2005.
doi:10.1109/TMTT.2004.839322

3. Yang, F. and Y. R. Samii, "Microstrip antennas integrated with electromagnetic band-gap EBG structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

4. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

5. Yang, X., Y. Liu, Y. Xu, and S. Gong, "Isolation enhancement in patch antenna array with fractal UC-EBG structure and cross slot," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2175-2178, 2017.
doi:10.1109/LAWP.2017.2703170

6. Alibakhshikenari, M., M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, and E. Limiti, "Mutual coupling suppression between two closely placed microstrip patches using EM-band gap metamaterial fractal loading," IEEE Access, Vol. 7, 23606-23614, 2019.
doi:10.1109/ACCESS.2019.2899326

7. Liu, Y., X. Yang, Y. Jia, and Y. J. Guo, "A low correlation and mutual coupling MIMO antenna," IEEE Access, Vol. 7, 127384-127392, 2019.
doi:10.1109/ACCESS.2019.2939270

8. Karimian, R., A. Kesavan, M. Nedil, and T. A. Denidni, "Low-mutual-coupling 60-GHz MIMO antenna system with frequency selective surface wall," IEEE Antennas Wireless Propag. Lett., Vol. 16, 373-376, 2017.
doi:10.1109/LAWP.2016.2578179

9. Qamar, Z., L. Riaz, M. Chongcheawchamnan, S. A. Khan, and M. F. Shafique, "Slot combined complementary split ring resonators for mutual coupling suppression in microstrip phased arrays," IET Microw., Antennas Propag., Vol. 8, No. 15, 1261-1267, Sep. 2014.
doi:10.1049/iet-map.2013.0541

10. Habashi, A., J. Nourinia, and C. Ghobadi, "Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators (FSRRs)," IEEE Antennas Wireless Propag. Lett., Vol. 10, 862-865, 2011.
doi:10.1109/LAWP.2011.2165931

11. Gao, D., Z.-X. Cao, S.-D. Fu, X. Quan, and P. Chen, "A novel slot-array defected ground structure for decoupling microstrip antenna array," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 7027-7038, Oct. 2020.
doi:10.1109/TAP.2020.2992881

12. Dey, S., S. Dey, and S. K. Koul, "Isolation improvement of MIMO antenna using novel EBG and hair-pin shaped DGS at 5G millimeter wave band," IEEE Access, Vol. 9, 162820-162834, 2021.
doi:10.1109/ACCESS.2021.3133324

13. Qian, B., X. Chen, and A. A. Kishk, "Decoupling of microstrip antennas with defected ground structure using the common/differential mode theory," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 5, 828-832, May 2021.
doi:10.1109/LAWP.2021.3064972

14. Govindarajulu, S. R., A. Jenkel, R. Hokayem, and E. A. Alwan, "Mutual coupling suppression in antenna arrays using meandered open stub filtering technique," IEEE Open Jrn. Antennas Propag., Vol. 1, 379-386, 2020.
doi:10.1109/OJAP.2020.3010153

15. Askarian, A., J. Yao, Z. Lu, and K. Wu, "Surface-wave control technique for mutual coupling mitigation in array antenna," IEEE Microw. Wireless Compon. Lett., Vol. 32, No. 6, 623-626, Jun. 2022.
doi:10.1109/LMWC.2021.3139196

16. Pei, T., L. Zhu, J. Wang, and W. Wu, "A low-profile decoupling structure for mutual coupling suppression in MIMO patch antenna," IEEE Trans. Antennas Propag., Vol. 69, No. 10, 6145-6153, Oct. 2021.
doi:10.1109/TAP.2021.3098565

17. Cheng, Y., X. Ding, W. Shao, and B. Wang, "Reduction of mutual coupling between patch antennas using a polarization-conversion isolator," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1257-1260, 2017.
doi:10.1109/LAWP.2016.2631621

18. Farsi, S., H. Aliakbarian, D. Schreurs, B. Nauwelaers, and G. A. E. Vandenbosch, "Mutual coupling reduction between planar antennas by using a simple microstrip U-section," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1501-1503, 2012.
doi:10.1109/LAWP.2012.2232274

19. Vishvaksenan, K. S., K. Mithra, R. Kalaiarasan, and K. S. Raj, "Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2146-2149, 2017.
doi:10.1109/LAWP.2017.2700521

20. Meng, H. and K.-L. Wu, "An LC decoupling network for two antennas working at low frequencies," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 7, 2321-2329, Jul. 2017.
doi:10.1109/TMTT.2017.2658562

21. Zhang, Y. M. and S. Zhang, "A novel aperture-loaded decoupling concept for patch antenna arrays," IEEE Trans. Microw. Theory Tech., Vol. 69, No. 9, 4272-4283, Sept. 2021.
doi:10.1109/TMTT.2021.3085904

22. Lau, B. K. and J. B. Andersen, "Simple and efficient decoupling of compact arrays with parasitic scatterers," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 464-472, Feb. 2012.
doi:10.1109/TAP.2011.2173440

23. Zhao, L. and K. Wu, "A decoupling technique for four-element symmetric arrays with reactively loaded dummy elements," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4416-4421, Aug. 2014.
doi:10.1109/TAP.2014.2326425

24. Zhai, G., Z. N. Chen, and X. Qing, "Mutual coupling reduction of a closely spaced four-element MIMO antenna system using discrete mushrooms," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 10, 3060-3067, Oct. 2016.
doi:10.1109/TMTT.2016.2604314

25. Zaker, R. and A. Kheirdoost, "Bandwidth and isolation improvement of highly coupled printed array antenna using multiple shorting posts," IEEE Trans. Antennas Propag., Vol. 69, No. 11, 7987-7992, Nov. 2021.
doi:10.1109/TAP.2021.3076662

26. Yang, W., L. Chen, S. Pan, W. Che, and Q. Xue, "Novel decoupling method based on coupling energy cancellation and its application in 5G dual-polarized high-isolation antenna array," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 2686-2697, Apr. 2022.
doi:10.1109/TAP.2021.3137170

27. Liu, N.-W., L. Zhu, Z.-X. Liu, M. Li, G. Fu, and Y. Liu, "A novel low-profile circularly polarized diversity patch antenna with extremely small spacing, reduced size, and low mutual coupling," IEEE Trans. Antennas Propag., Vol. 70, No. 1, 135-144, Jan. 2022.
doi:10.1109/TAP.2021.3111344

28. Sufian, M. A., N. Hussain, H. Askari, S. G. Park, K. S. Shin, and N. Kim, "Isolation enhancement of a metasurface-based MIMO antenna using slots and shorting pins," IEEE Access, Vol. 9, 73533-73543, 2021.
doi:10.1109/ACCESS.2021.3079965

29. Luan, H., C. Chen, W. Chen, L. Zhou, H. Zhang, and Z. Zhang, "Mutual coupling reduction of closely E/H-plane coupled antennas through metasurfaces," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 10, 1996-2000, Oct. 2019.
doi:10.1109/LAWP.2019.2936096

30. Sun, L., Y. Li, Z. Zhang, and H. Wang, "Antenna decoupling by common and differential modes cancellation," IEEE Trans. Antennas Propag., Vol. 69, No. 2, 672-682, Feb. 2021.
doi:10.1109/TAP.2020.3009427

31. Sun, L., Y. Li, and Z. Zhang, "Decoupling between extremely closely spaced patch antennas by mode cancellation method," IEEE Trans. Antennas Propag., Vol. 69, No. 6, 3074-3083, Jun. 2021.
doi:10.1109/TAP.2020.3030922

32. Lai, Q. X., Y. M. Pan, S. Y. Zheng, and W. J. Yang, "Mutual coupling reduction in MIMO microstrip patch array using TM10 and TM02 modes," IEEE Trans. Antennas Propag., Vol. 69, No. 11, 7562-7571, Nov. 2021.
doi:10.1109/TAP.2021.3090520

33. Radavaram, S. and M. Pour, "A wideband coplanar L-strip fed rectangular patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 9, 1779-1783, 2021.
doi:10.1109/LAWP.2021.3096958

34. Pozar, D. M., "Microwave network analysis," Microwave Engineering, 4th Edition, Wiley, Hoboken, NJ, USA, 2012.

35. High Frequency Structure Simulator (HFSS), ANSYS, 2022 R1.

36. Ludwig, A., "Mutual coupling, gain and directivity of an array of two identical antennas," IEEE Trans. Antennas Propag., Vol. 24, No. 6, 837-841, Nov. 1976.
doi:10.1109/TAP.1976.1141440